
LECTURE 1. SMOOTH MORPHISMS.

DORIN POPESCU

A ring morphism h : A → B is called quasi-smooth if for any A-algebra D and
an ideal I ⊂ D with I2 = 0, any A-morphism B → D/I lifts to an A-morphism
B → D . If any such lifting is unique, then h is quasi-etale. A quasi-smooth (resp.
quasi-etale) is called smooth (resp. etale) if it is finitely presented and it is called
essentially smooth (resp. essentially etale) if it is a localization of a smooth (resp.
etale) morphism.

Example 1. i) A polynomial algebra A[X1, . . . , Xn] is smooth over A.
ii) A localization AS is essentially etale over A.
iii) If f = (f1, . . . , fn) ∈ A[X1, . . . , Xn]n with ∆ = det(∂fi/∂Xj) 6= 0 then B =

(A[X1, . . . , Xn]/(f))∆ is etale. Indeed, a morphism g : B → D/I is given by Xi →
(xi + I) for some xi ∈ D. To lift g to a morphism B → D means to find ti ∈
I such that f(x1 + t1, . . . , xn + tn) = 0. By Taylor’s formula this is equivalent
to find a solution to the linear system of equations

∑
i(∂fi/∂Xj)(x1, . . . , xn)Tj +

fi(x1, . . . , xn) = 0, i ∈ [n]. This holds uniquely applying Cramer’s rule, which
means that B/A is etale.

iv) Now let f = (f1, . . . , fr) ∈ A[X1, . . . , Xn]r, r ≤ n and ∆ be some r × r-
minor of the Jacobian matrix (∂fi/∂Xj). Then a similar proof shows that B =
(A[X1, . . . , Xn]/(f))∆ is smooth over A. In particular, if r = 1 and f ′ = ∂f/∂Xn

then B = (A[X1, . . . , Xn]/(f))f ′ is smooth over A.

Remark 2. Conversely, Grothendieck showed in [2] (see also [7, Theorem 2.5]) that
any smooth A-algebra looks locally like (A[X1, . . . , Xn]/(f))f ′ as above.

Lemma 3. Let B be a quasi-smooth (resp. quasi-etale) A-algebra and g : B → C
a morphism of A-algebras such that C is quasi-smooth (resp. quasi-etale) over B,
the structure of B-algebra of C being given by g. Then C is quasi-smooth (resp
quasi-etale) over A.

Proof. Let D be an A-algebra, J ⊂ D an ideal and w̄ : C → D/J an A-morphism.
Then there exists an A-morphism v : B → D lifting w̄g because B is quasi-smooth
over A. Thus D has a structure of B-algebra via v and there exists a B-algebra
lifting w : C → D of w̄ because C is quasi-smooth over B. Clearly, w is also an
A-algebra lifting of w̄. The quasi-etale case goes similarly. �
Lemma 4. (Base change) Let u : A → B be a quasi smooth morphism and C an
A-algebra. Then C ⊗ u is also quasi smooth.

Let B = A[X1, . . . , Xn]/I, F the free B-module with basis dXi, i ∈ [n] and
d : I → F the map defined for f ∈ I by d(f) =

∑n
i=1(∂f/∂Xi)dXi. As d(I2) = 0

note that d induces a map dI : I/I2 → F .
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Proposition 5. B is quasi-smooth if and only if dI has a retraction.

Proof. Let D be an A-algebra, J ⊂ D an ideal with J2 = 0 and g : B → D/J an
A-morphism, let us say g is given by Xi → xi + J , i ∈ [n] for some xi ∈ D. Let
h : A[X1, . . . , Xn]→ D be the map given by f → f(x). We have h(I) ⊂ J and so h
induces a map hI : I/I2 → J because J2 = 0.

As in Example 1 we note that g can be lifted to a map B → D if there exists
t = (t1, . . . , tn) in J which is a solution of the linear system of equations

n∑

j=1

(∂f/∂Xj)(x)Tj + f(x) = 0

for all f ∈ I. Since J2 = 0 we see that J is a D/J-module and so a B-module via g.
Therefore, g can be lifted to a map B → D if and only if there exists a B-module
morphism ϕ : F → J (in our case given by dXj → tj) such that ϕdI = −hI .

Now the sufficiency is trivial because if dI has a retraction ψ then we may take
ϕ = −hψ. Conversely, takeD = A[X1, . . . , Xn]/I2, J = I/I2, g = 1B and hI = 1I/I2 .
Then there exists a lifting B → D and so as above there exists ϕ : F → J such that
ϕdI = −hI . Thus dI has a retraction. �
Lemma 6. B is smooth over A if and only if Bm is smooth over A for every maximal
ideal m of B.

Proof. Let dI : I/I2 → F be as above. Using the above proposition it is enough to
see that dI has a retraction if and only if Bm⊗ dI has a retraction for each maximal
ideal m of B as shows the following elementary lemma. �
Lemma 7. Let v : M → N be an A-morphism of finitely presented A-modules.
Then v has a retraction if and only if Am ⊗ v has a retraction for all maximal ideal
m of A.

Proof. Let v′ : HomA(N,M) → HomA(M,M) be the map given by g → gv. Then
v has a retraction if and only if 1M ∈ Im v′, that is if and only if v′ is surjective.
Note that (HomA(N,M))m ∼= HomAm(Nm,Mm) because N,M are finitely presented
A-modules. Clearly, v′ is surjective if and only if Am⊗v′ is surjective for all maximal
ideal m of A, which is enough. �

A ring morphism u : A → A′ has regular fibers if for all prime ideal Q ∈ SpecA′

the ring (A′/u−1(Q)A′)Q is a regular local ring. The purpose of our lectures will be
to sketch a proof to the following theorem.

Theorem 8. (General Neron Desingularization, Popescu [3], [4], [5]) Suppose that
A ⊃ Q and let u : A→ A′ be a regular morphism of noetherian rings. Then any A-
morphism v : B → A′ factors through a smooth A-algebra C, that is v is a composite
A-morphism B → C → A′.

Let B = A[X1, . . . , Xn]/(f) for some systems of polynomials f . Roughly speaking
the above theorem says that one can extend the solution v(X) of f to a solution of
a bigger system of polynomial equations g from A[X1, . . . , Xn, Y1, . . . , YN ] such that
C = A[X1, . . . , Xn, Y1, . . . , YN ]/(g) is a smooth A-algebra.
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Remark 9. The above theorem is also true when A does not contain Q but then
we must suppose that u is the so called geometrically regular. Also the conclusion of
this theorem could say that A′ is a filtered colimit of smooth A-algebras. Clearly, the
last statement implies the previous one. The converse is also easy (see [1, Lemma
5.2], or [7, Lemma 1.5]) but probably we will not use in our lectures.

Example 10. LetK/k be a separable field extension, g a system of polynomial equa-
tions from k[Y ], Y = (Y1, . . . , Yn) and y ∈ Kn a solution of g in K. Then there exists
a finite type field subextension E/k of K/k such that y ∈ En. Since E/k is separa-
ble and of finite type, it is separable generated, let us say E = k(x1, . . . , xr), where
x1, . . . , xr−1 is a transcendental basis over k and xr is a primitive algebraic separable
element over k(x1, . . . , xr−1). Let f = Irr(k(x1, . . . , xr−1), xr) ∈ k(x1, . . . , xr−1)[Xr].
Then the partial derivation f ′ = ∂f/∂Xr satisfies f ′(xr) 6= 0 and E = Q(k[X]/(f))
is essentially smooth over k. Clearly the map v : B = k[Y ]/(g) → K factors
through a smooth k-algebra C of type (k[X]/(f))f ′h for some h ∈ k[X] \ (f), where
we identify Xi with xi for i < r.
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LECTURE 2. THE SMOOTH LOCUS OF A MORPHISM.

DORIN POPESCU

Let B be finitely presented A-algebra, let us say B = A[X1, . . . , Xn]/I, where I
is finitely generated. If f = (f1, . . . , fr), r ≤ n is a system of polynomials from I
then we can define the ideal ∆f generated by all r×r-minors of the Jacobian matrix
(∂fi/∂Xj). After Elkik [2] let HB/A be the radical of the ideal

∑
f ((f) : I)∆fB,

where the sum is taken over all systems of polynomials f from I with r ≤ n. An
element d ∈ HB/A is called standard if there exists a system of r-polynomials f from

I, r ≤ n such that d ∈
√

((f) : I)∆fB. If d ∈ ((f) : I)∆fB for some f then we call
a strictly standard.

Remark 1. Let S ⊂ B be a multiplicative set in B. Then (HB/A)S = HBS/A.

We would like to prove a stronger form as I state in the first lecture.

Theorem 2. (General Neron Desingularization, Popescu [5], [6], [7]) Suppose that
A ⊃ Q and let u : A → A′ be a regular morphism of noetherian rings. Then any
A-morphism v : B → A′ can be factorized through a standard smooth A-algebra B′,
that is v is a composite A-morphism B → B′ → A′.

Lemma 3. Let K/k be a separable field extension, (A,m) an Artinian local k-
algebra, Ã = A⊗AK and A′ = (Ã)mÃ. Then A′ is an Artinian local K-algebra with
the maximal ideal mA′ and any A-morphism v : B → A′ can be factorized through a
standard smooth A-algebra B′, that is v is a composite A-morphism B → B′ → A′.

Proof. As in the last example of the first lecture we express K = ∪iki as a filtered
union of finite type field extensions. Set Ai = A⊗k ki. Then A = ∪iAi is a filtered
union of local k-subalgebras of A′. We have ki = Q(k[X1, . . . , Xr]/(g)) for some
monic polynomial g with g′ = ∂g/∂X 6∈ (g) and so Ai

∼= (A[X1, . . . , Xr]/(g))(m,g).
Thus A′ is a filtered union of essential smooth A-algebras Ai. Since B is of fi-
nite type over A, v factors through Ai for some i. But Ai is a filtered induc-
tive limit of standard smooth algebras of type B′ = A[X1, . . . , Xr]/(g))g′h for some
h ∈ A[X1, . . . , Xr] \ (m, g) and so v factors through such B′. �
Theorem 4. General Neron Desingularization holds for Artinian local rings.

Proof. Let (A,m, k) be a local Artinian ring containing Q and u : A → A′ be a
regular morphism of Artinian local rings. Then mA′ is the maximal ideal of A′

and let k′ = A′/mA′. By [3] there exists in general (that is even A is not Artinian
but Noetherian) a flat complete Noetherian local A-algebra C, unique up to an
isomorphism, such that mC is the maximal ideal of C and C/mC ∼= k′. As any
Artinian local ring is complete we see that in fact A′ is unique given with the above
properties. But in the above lemma we constructed one A-algebra A′ of this type
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as a localization of A ⊗k k
′. By unicity this should be our A′ and it is enough to

apply the above lemma. �
Next we will give an application of Theorem 2 which answers a Conjecture of M.

Artin [1].

Theorem 5. (Popescu [6], [8]) An excellent Henselian local ring has the property
of approximation.

Proof. Let (A,m) be an excellent Henselian local ring, h be a finite system of polyno-

mial equations in Z = (Z1, . . . , Zs) over A and z̃ a solution of h in the completion Â

of A. By General Neron Desingularization the A-morphism v : B = A[Z]/(h)→ Â,
Z → z̃ factors through an A-algebra C = (A[Y ]/(f))g Y = (Y1, . . . , YN), where
f = (f1, . . . , fr), r ≤ N , are polynomials in Y over A and g belongs to the ideal ∆f

generated by all r × r-minors of the Jacobian matrix (∂fi/∂Yj), let us say v = wq,

w : C → Â, q : B → C. Then ŷ = w(Ŷ ) is a solution of f in Â such that

g(ŷ) = w(ĝ) 6∈ mÂ. Choose ỹ in An such that ỹ ≡ ŷ mod mÂ. Then f(ỹ) ≡ f(ŷ) = 0

mod mÂ, g(ỹ) ≡ g(ŷ) 6= 0 mod mÂ. In particular, f(ỹ) ≡ 0 mod m. By the Im-
plicit Function Theorem we get a solution y of f in A such that y ≡ ỹ mod m.
Then we get an A-morphism u : C → A by Y → y. Clearly, z = uq(Ẑ) is a solution

of h in A such that z ≡ ẑ mod mÂ. �
Lemma 6. Let A be a ring and a1, a2 a weak regular sequence of A, that is a1 is
a non-zero divisor of A and a2 is a non-zero divisor of A/(a1). Let A′ be a flat
A-algebra and set B = A[X1, X2]/(f), where f = a1X1 + a2X2. Then HB/A is
the radical of (a1, a2) and any A-morphism B → A′ factors through a polynomial
A-algebra in one variable.

Proof. Note that all solutions of f = 0 in A are multiples of (−a2, a1). By [4,
Theorem 7.6]) any solution of f in A′ is a linear combinations of some solutions of
f in A and so again a multiple of (−a2, a1).

Now let h : B → A′ be a map given by Xi → xi ∈ A′. Then (x1, x2) = z(−a2, a1)
and so h factors through A[Z], that is h is the composite map B → A[Z]→ A′, first
map being given by (X1, X2)→ Z(−a2, a1) and the second one by Z → z. �
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LECTURE 3. ELKIK’S THEOREM.

DORIN POPESCU

In the idea of the last lemma from Lecture 2 we present the following proposition.

Proposition 1. Let fi =
∑n

i=1 aijXj ∈ A[X1, . . . , Xn], i ∈ [N ] be a system of linear

homogeneous polynomials and q(k) = (q
(k)
1 , . . . , q

(k)
n ), k ∈ [p] be a complete system of

solutions of f = (f1, . . . , fN) = 0 in A. Let b = (b1, . . . , bN) ∈ AN and c a solution
of f = b in A. Let A′ be a flat A-algebra and B = A[X1, . . . , Xn]/(f − b). Then any
A-morphism B → A′ factors through a polynomial A-algebra in p variables.

Proof. Let h : B → A′ be a map given by X → x ∈ A′n. Since A′ is flat over A we see
that x−h(c) is a linear combinations of q(k), that is there exist z = (z1, . . . , zp) ∈ A′p
such that x − h(c) =

∑p
k=1 zkh(q(k)). Therefore, h factors through A[Z1, . . . , Zp],

that is h is the composite A-morphism B → A[Z1, . . . , Zp] → A′, where the first
map is given by X → c+

∑p
k=1 Zkq

(k) and the second one by Z → z. �

Theorem 2. (Elkik [1]) Let B be a finitely presented A-algebra and P a prime ideal
of B. Then BP is essentially smooth over A if and only if P 6⊃ HB/A.

Proof. LetB = A[X1, . . . , Xn]/I. Suppose that P 6⊃ HB/A and letQ ⊂ A[X1, . . . , Xn]
be the inverse image of P . Let f be a system of r polynomials from I such that
((f) : I)∆f 6⊂ P . Then AnnA[X1,...,Xn] I/(f) 6⊂ Q and so f generates IQ. We may
suppose that det(∂fi/∂Xj)i,j=1,...,r 6∈ Q because ∆f 6⊂ P . Then the composite map

(BP )r → (I/I2)P →
n∑

i=1

BPdXi →
r∑

i=1

BPdXi

given by ei → fi →
∑n

j=1(∂fi/∂Xj)dXj →
∑r

j=1(∂fi/∂Xj)dXj is invertible because

det(∂fi/∂Xj)i,j=1,...,r 6∈ Q, (ei) being the canonical basis of (BP )r. The first map is
surjective since f generates IQ and it follows also injective from above. Therefore
BP ⊗B dI has a retraction and so BP is quasi-smooth over A.

Conversely, we may suppose that BP⊗BdI has a retraction. It follows that (I/I2)P
is projective and so free over the local ring BP . Choose f to be a system of let us
say r polynomials from I inducing a basis in (I/I2)P . By Nakayama we see that f
generates IQ. Since (BP )r → (I/I2)P →

∑n
i=1BPdXi has a retraction we see that

1 is a linear combinations of r × r-minors of (∂f/∂X). Thus we may assume that
M = det(∂fi/∂Xj)i,j=1,...,r 6∈ Q and so ∆f 6⊂ Q. Therefore, HB/A 6⊂ P . �

Remark 3. The above theorem says that V (HB/A) is the non smooth locus of B
over A.

Corollary 4. B is smooth if and only if HB/A = B.
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Proof. B is smooth over A if and only if Bm is essentially smooth over A for every
maximal ideal m of B. Using the above theorem we see that the last statement says
that there exists no maximal ideal of B containing HB/A, that is HB/A = B. �
Corollary 5. Let s ∈ B. Then Bs is smooth over A if and only if s ∈ HB/A.

Proof. Note that Bs is smooth over A if and only if (HB/A)s = HBs/A = Bs by the
above corollary. Thus s ∈ HB/A. �
Corollary 6. Let g : B → C be a morphism of finitely presented A-algebras. Then
HC/A ⊃ g(HB/A)C ∩HC/B, the structure of B-algebra of C being given by g.

Proof. Indeed, let P ∈ SpecC, P 6⊃ g(HB/A)C ∩HC/B. Then g−1(P ) 6⊃ HB/A and
P 6⊃ HC/B and so Bg−1(P ) is essentially smooth over A and CP is essentially smooth
over B by Theorem 2. Thus CP is essentially smooth over A, that is P 6⊃ HC/A

using again Theorem 2. �
Lemma 7. Let u : A → A′ be a morphism, B be a finitely presented A-algebra,
y ∈ B and v : B → A′ an A-morphism such that v(y) ∈

√
v(HB/A)A′ but y 6∈ HB/A.

Then there exist a finite presentation A-algebra C and two A-morphisms g : B → C,
w : C → A′ such that

(1) g(y) ∈ HC/A,
(2) v = wg,
(3) g(HB/A) ⊂ HC/B and so g(HB/A) ⊂ HC/A by Corollary 6.

Proof. Let x = (x1, . . . , xn) be a system of generators of HB/A. By hypothesis
we have v(y)s =

∑n
i=1 v(xi)zi for some s ∈ N and some elements zi ∈ A′. Set

C = B[Z1, . . . , Zn]/(ys −∑n
i=1 xiZi) and let w : C → A′ be given by Z → z. We

have xi ∈ HC/B and so (3) holds. Moreover g(y)s =
∑n

i=1 v(xi)Zi ∈ HC/B, that is
(1) holds too. �
Lemma 8. Let u : A→ A′ be a morphism, B be a finitely presented A-algebra and
v : B → A′ an A-morphism such that v(HB/A) = A′. Then v factors through a
smooth A-algebra C, that is v is a composite A-morphism B → C → A′.

For the proof apply the above lemma for y = 1.
Next we will see how goes the proof of General Neron Desingularization on dimen-

sion 1. Let u : A→ A′ be a flat morphism of Noetherian local rings of dimension 1.
Suppose that A,A′ ⊃ Q are domains and the maximal ideal m of A generates the
maximal ideal of A′. Then u is a regular morphism.

Lemma 9. Let B be a finite type A-algebra and v : B → A′ be an A-morphism.
Then v factors through a finite type A-algebra B′ such that there exists d ∈ A, d 6= 0
strictly standard for B′ over A.

Proof. Clearly we may substitute B by Im v. Suppose that B = A[X]/I, X =
(X1, . . . , Xn). Since Q(B)/Q(A) is a separable field extension we get that HB/A 6= 0
and so hB 6= 0 because (0) is a smooth point (the same thing follows applying
the Jacobian Criterion). If hB = A′ we may apply Lemma 8. We assume that
hB = mA′ and so hB ∩ A = m. Let P ∈ (∆f ((f) : I)) \ I for some system of
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polynomials f = (f1, . . . , fr) from I and choose d′ ∈ (v(P )A′) ∩ A. Moreover we
may choose P to be from M((f) : I) where M is a r× r-minor of (∂f/∂X) . Then
d′ = v(P )z for some z ∈ A′. Set B′ = B[Z]/(g), g = d′ − PZ and let v′ : B′ → A′

be the map of B-algebras given by Z → z. It follows that d′ ∈ (((g), f) : (I, g)) and
d′ ∈ ∆f , d′ ∈ ∆g. Thus d = d′3 6= 0 is strictly standard for B′ over A. �

References

[1] R. Elkik, Solutions d’equations a coefficients dans un anneaux henselien, Ann. Sci. Ecole
Normale Sup., 6 (1973), 553-604.

[2] H. Matsumura, Commutative algebra, Mathematics Lect. Notes 56, 1980, Ben-
jamin/Cummings Publ. Company.

[3] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.
[4] D. Popescu, General Neron Desingularization, Nagoya Math. J., 100 (1985), 97-126.
[5] D. Popescu, Artin Approximation, in ”Handbook of Algebra”, vol. 2, Ed. M. Hazewinkel,

Elsevier, 2000, 321-355.
[6] R. Swan, Neron-Popescu desingularization, in ”Algebra and Geometry”, Ed. M. Kang, Inter-

national Press, Cambridge, (1998), 135-192.

Dorin Popescu, ”Simion Stoilow” Institute of Mathematics , Research unit 5,
University of Bucharest, P.O.Box 1-764, Bucharest 014700, Romania

E-mail address: dorin.popescu@imar.ro

3





LECTURE 4. GENERAL NERON DESINGULARIZATION IN
DIMENSION 1

DORIN POPESCU

The aim of this lecture is to prove General Neron Desingularization in dimension
1. Let u : A → A′ be a flat morphism of Noetherian local rings of dimension 1.
Suppose that A,A′ ⊃ Q are domains and the maximal ideal m of A generates the
maximal ideal of A′. Then u is a regular morphism. Let B = A[X1, . . . , Xn]/I
be a finitely presented A-algebra and v : B → A′ an A-morphism. Using the last
lemma from Lecture 3 we may factor v through a finite type A-algebra B′ such that
there exists d ∈ A, d ̸= 0 strictly standard for B′ over A. Thus we may suppose
from the beginning that B has the property of B′ changing B by B′. Moreover we
may assume that there exists f = (f1, . . . , fr) in I, M = det(∂fi/∂Xj)i,j∈[r] and
P ∈ (M((f) : I)) \ I such that d ≡ P modulo I. Set Ā = A/(d3), Ā′ = A′/d3A′,
ū = Ā ⊗A u, B̄ = B/d3B, v̄ = Ā ⊗A v. Clearly ū is a regular morphism of Artinian
local rings.

Lemma 1. (Small Lifting Lemma) Then there exists a standard smooth A-algebra
D and an A-morphism w : D → A′ such that v̄ factors through w̄ = Ā ⊗A w.

Proof. By General Neron Desingularization in Artinian case, v̄ factors through a

smooth Ā-algebra C̄, let us say v̄ is the composite map B̄ → C̄
β̄−→ Ā′. Moreover,

C̄ = (Ā[Y ]/(ḡ))ḡ′Ḡ, Y = (Y1, . . . , Yr), ḡ, Ḡ ∈ Ā[Y ], ḡ′ = ∂ḡ/∂Yr and ḡ is monic in
Yr.

Let g, G ∈ A[Y ] be polynomials lifting ḡ, Ḡ and suppose that g is monic in Yr.
Choose y ∈ A′r inducing β̄(Y ) in Ā′. Then g(y) = d3z for some z ∈ A′. Set D =
(A[Y, Z]/(g −d3Z))g′G, g′ = ∂g/∂Yr and let w : D → A′ be the map (Y, Z) → (y, z).
We call D a lifting of C̄. Unfortunately, v does not factor through D. But v̄ factors
through D̄ and D̄ = Ā ⊗A D ∼= C̄[Z] is smooth over C̄ and so over Ā. �

Remark 2. If A′ = Â then Ā ∼= Ā′ and we may take D = A.

Let S = B ⊗A D ∼= D[X]/ID[X] and α : S → A′ be given by b ⊗ z′ → v(b)w(z′).
Then v, w factor through α. We have the canonical maps ν : B → S, b → b ⊗ 1 and
γ : D → S, z′ → 1 ⊗ z′. Unfortunately, S is not smooth over A even it is smooth
over B. Since v̄ factors through D̄ there exists τ̄ : B̄ → D̄ such that v̄ = w̄τ̄ . Then
the map ρ̄ : S̄ = Ā ⊗A S → D̄ given by b̄ ⊗ z̄′ → τ̄(b)z̄′ is a retraction of D̄-algebras
and w̄ρ̄ = ᾱ := Ā ⊗A α. Let ρ̄ be given by X → x + d3Dn for some x ∈ Dn. Thus
I(x) ≡ 0 modulo d3D

Note that if A′ = Â as in Remark 2 we have S ∼= B and the retraction ρ̄ is the

composite map S̄ ∼= B̄
v̄−→ Ā′ ∼= Ā = D̄.
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We have d ≡ P modulo I and so P (x) ≡ d modulo d3 in D because I(x) ≡ 0
modulo d3D. Thus P (x) = ds for a certain s ∈ D with s ≡ 1 modulo d. Assume
that P = NM for some N ∈ (I : (f)). Let H be the n × n-matrix obtained adding
down to (∂f/∂X) as a border the block (0|Idn−r). Let G′ be the adjoint matrix of
H and G = NG′. We have

GH = HG = NMIdn = P Idn

and so
dsIdn = P (x)Idn = G(x)H(x).

Let α be given by X → y ∈ A′n. Set x′ = w(x). We have y − x′ ∈ d3A′n, let us
say y − x′ = d2ε for ε ∈ dA′n. Then t := H(x)ε ∈ dA′n satisfies

G(x)t = P (x)ε = dsε

and so
s(y − x′) = dG(x)t.

Let
h = s(X − x) − dG(x)T,

where T = (T1, . . . , Tn) are new variables. The kernel of the map φ : D[X,T ] → A′

given by X → y, T → t contains h. Since

s(X − x) ≡ dG(x)T modulo h

and
f(X) − f(x) ≡

∑

j

∂f/∂Xj(x)(Xj − xj)

modulo higher order terms in Xj − xj by Taylor’s formula we see that for m =
maxi deg fi we have

smf(X) − smf(x) ≡
∑

j

sm−1d∂f/∂Xj(x)Gj(x)Tj + d2Q =

sm−1dP (x)T + d2Q

modulo h where Q ∈ T 2D[T ]r. This is because (∂f/∂X)G = (P Idr|0). We have
f(x) = d2c for some c ∈ dDr. Then gi = smci + smTi + Qi, i ∈ [r] is in the kernel of
φ because d2φ(g) = d2g(t) ∈ (h(y, t), f(y)) = (0). Set E = D[X,T ]/(I, g, h) and let
λ : E → A′ be the map induced by φ.

Note that the r × r-minor s′ of (∂g/∂T ) given by the first r-variables T is from
srp + (T ) ⊂ 1 + (d, T ) because Q ∈ (T )2. Then U = (D[X,T ]/(h, g))ss′ is smooth
over D. We claim that I ⊂ (h, g)D[X, T ]ss′s′′ for some other s′′ ∈ 1 + (d, T ).
Indeed, we have PI ⊂ (h, g)D[X, T ]s and so P (x + s−1dG(x)T )I ⊂ (h, g)D[X, T ]s.
Since P (x + s−1dG(x)T ) ∈ P (x) + d(T ) we get P (x + s−1dG(x)T ) = ds′′ for some
s′′ ∈ 1 + (d, T ). It follows that s′′I ⊂ (h, g)D[X,T ]ss′ because d is regular in U ,
the map A → U being flat, and so I ⊂ (h, g)D[X,T ]ss′s′′ . Thus Ess′s′′ ∼= Us′′ is a
B-algebra which is also standard smooth over A.

As w(s) ≡ 1 modulo d and w(s′), w(s′′) ≡ 1 modulo (d, t), d, t ∈ mA′ we see that
w(s), w(s′), w(s′′) are invertible because A′ is local and so λ (thus v) factors through
the standard smooth A-algebra Ess′s′′ .
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Remark 3. We believe that the above proof provides a possible algorithm to find
the smooth A-algebra Ess′ .

Remark 4. Assume that A,A′ are Noetherian local rings of dimension one but not
domains. Then how I can get above g(t) = 0 from d2g(t) = 0? In this case I should
replace d by a high power e of it such that AnnA d = AnnA d2 and to arrange t such
that g(t) ∈ (d) because then AnnA d ∩ (d) = 0. For the first condition we take e
such that the chain AnnA d ⊂ AnnA d2 ⊂ . . . ⊂ AnnA dn ⊂ . . . stops for n = e by
Noetherianity. Could we find an algorithm to compute e?

Remark 5. Suppose that A,A′ are domains of dimension 2. Then we might con-
struct D as above with hD ̸⊂ q for a minimal prime ideal q containing hB. But
we should also ask to have hB ⊂ hD because otherwise D could mean no progress
compare with B. In dimension one we did not need the condition hB ⊂ hD but now
this is essential.
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EXTRA LECTURE 1. A VIEW ON THE PROOF OF THE
GENERAL NERON DESINGULARIZATION

DORIN POPESCU

This lecture uses mainly pages 147, 168, 169, 171 from [5] and 347-354 of [4].
The standard elements play an important role in the proof of General Neron

Desingularization. Let u : A → A′ be a regular morphism of Noetherian rings
containing Q, B a finite type A-algebra and v : B → A′ a morphism of A-algebras.
We need to reduce whenever it is necessary to the case when all elements of HB/A

are standard. This is done by the following theorem.

Theorem 1. (Elkik [1]) Let B = A[X1, . . . , Xn]/I be a finitely presented A-algebra,
M = I/I2 and C = SA(M) be the symmetric A-algebra defined by M . Then
HB/AC ⊂ HC/A and any element of HB/A becomes standard in C over A.

We will not give here the proof, but an easy one is presented on pages 147, 148
of [5].

Corollary 2. Let u : A→ A′ be a morphism and B be a finitely presented A-algebra.
Then there exist a finitely presented A-algebra C and two A-morphisms g : B → C,
w : C → A′ such that

(1) v = wg,
(2) g(HB/A) ⊂ HC/A,
(3) for every b ∈ HB/A the element g(b) is standard for C over A.

Proof. Let C = SA(I/I2) be as in the above theorem, g the canonical inclusion and
h : C → B the canonical retraction of g sending I/I2 in 0. Then (2), (3) hold by
the above theorem and w = vh satisfies (1). �

Set hB =
√
v(HB/A)A′. We may suppose that hB 6= A′. Let q be a minimal prime

over ideal of hB. After [5] we say that A→ B → A′ ⊃ q is resolvable if there exists a
finite type A-algebra C such that v factors through C, let us say v = wg, g : B → C,
w : C → A′ and hB ⊂ hC =

√
w(HC/A)A′ 6⊂ q. The proof of the General Neron

Desingularization follows from the next proposition.

Proposition 3. Suppose that A ⊃ Q, p = u−1q is a minimal over ideal of u−1(hB),
the map A → A′q is flat and A′q/pA′q is a regular ring. Then A → B → A′ ⊃ q is
resolvable.

Assume that p is a minimal prime over ideal of u−1(hB) and let q1, . . . , qe be the
minimal prime over ideals of hb. Then p contains the product of u−1(qi), i ∈ [e]
and so it contains one of them, let us say u−1(q) for q = q1. The proof of the
General Neron Desingularization follows applying the above proposition, which is
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possible because u is regular. Indeed, then A → B → A′ ⊃ q is resolvable and so
hB ⊂ hC 6⊂ q. It follows that hB ( hC . Applying several times this procedure by
Noetherian induction we arrive to the case when hB = A′.

Remark 4. Note that if q is minimal in A′ in the assumption of Proposition 3 then
Ap → Ap⊗AB → A′q ⊃ qA′q is resolvable by the General Neron Desingularization on
Artinian rings. In particular, vp : Bp = Ap ⊗A B → A′q factors through a finite type
Ap-algebra D such that hDA

′
q = A′q. We may suppose that D is standard smooth.

Proposition 5. Proposition 3 holds if q is minimal in A′.

Proof. By Remark 4 vp : Bp = Ap ⊗A B → A′q factors through a standard smooth
Ap-algebra D, let us say vp = wpgp for some gp : Bp → D, wp : D → A′q. We
claim that we may choose D such that there exists a finite type B-algebra C with
Ap ⊗A C ∼= D and such that v factors through C, let us say v = wg, w : C → A′, g
being the canonical algebra structure morphism B → C.

Indeed, let D = Bp[Z1, . . . , Zs]/(h), h = (h1, . . . , he), wp being given by Z → y/t
for some y ∈ A′s, t ∈ A′ \ q. For large l ∈ N we get some homogeneous polynomials
h′i(Y, T ) = T lhi(Y/T ), Y = (Y1, . . . , Ys) such that h′i(y, t) = 0 in A′q. This means that
rh′i(y, t) = 0 for some t ∈ A′ \ q. Changing y with ry and t with rt we may suppose
that h′i(y, t) = 0 in A′. Let C = B[Y, T ]/(h′) and w : C → A′ be the extension of
v by Y → y, T → t. Note that the Bp-morphism D[T, T−1] → (Bp ⊗B C)T given
by Z → Y/T , T → T is an isomorphism and changing D by D[T, T−1] our claim is
proved. It follows that w(HC/A) 6⊂ q, let us say w(α) 6∈ q for some α ∈ HC/A.

Remains to change C if necessary in order to have also hB ⊂ hC . Let b1, . . . , bν
be a system of generators of HB/A. If MinA′ = {q} then hB = q =

√
(0) and there

exists nothing to change because clearly hB ⊂ hC . Otherwise there exists γ ∈ A′ \ q
such that γv(bj)

k = 0, j ∈ [ν] for some k ∈ N. Set

C ′ = B[Y, T, (Uj)j∈[ν], (Vij)j∈[ν],i∈[e],Γ]/((h′i +
∑

j∈[ν]

UjVij)i∈[e], (ΓUj)j∈[ν]),

where Uj, Vij,Γ are new variables. Note that v can be extended to w′ : C ′ → A′

given by Y → y, T → t, Uj → bkj , Vij → 0, Γ → γ and C ′Γ
∼= C[(Vij)i,j,Γ,Γ

−1]
is a localization of a polynomial C-algebra. Thus Γα ∈ HC′/A. On the other
hand, C ′U1

∼= B[Y, T, (Uj)j∈[ν], U
−1
1 , (Vij)1<j≤ν,i∈[e]] is a localization of a polynomial B-

algebra. Thus U1 ∈ HC′/B and so v(b1)k ∈ w′(HC′/B). It follows that v(b1) ∈ hC′ and
similarly v(bj) ∈ hC′ for all j ∈ [ν]. Thus hB ⊂ hC′ . Also note that γw(α) ∈ hC′ \ q.

�
Proposition 3 follows from the next lemma.

Lemma 6. (Main Lemma [4, Lemma 6.7]) Let a ∈ A, Ā = A/a8A, B̄ = B/a8B,
Ā′ = A′/a8A′ and q̄ = q/a8A′. Suppose that

(1) a 6∈ p for all p ∈ MinA,
(2) AnnA(a2) = AnnA(a), AnnA′(u(a)2) = AnnA′(u(a)),
(3) a is strictly standard for a certain presentation of B over A,
(4) Ā→ B̄ → Ā′ ⊃ q̄ is resolvable.
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Then A→ B → A′ ⊃ q is resolvable too.

Proof of Proposition 3. Apply induction on height of q. If height q = 0 then
apply Proposition 5. Assume that height q > 0. If height p > 0 then choose a in
u−1(hB) which lies in no minimal prime ideal of A. We have height p/(a) < height p,
and so height q/u(a)A′ < height q because

height q − height p = dimA′q/pA
′
q = height q/u(a)A′ − height p/(a)

by flatness of Ap → A′q (see [2, 15.1]). The chain AnnA(a) ⊂ . . . ⊂ AnnA(at) ⊂
stops by Noetherianity. Thus changing a by one of its powers we may suppose
that AnnA(a2) = AnnA(a), AnnA′(u(a)2) = AnnA′(u(a)). By Corollary 2 we may
change B by another one finite type A-algebra and a by one of its power such that
a is strictly standard for a certain presentation. Set Ā = A/a8A, B̄ = B/a8B,
Ā′ = A′/a8A′ and q̄ = q/a8A′. Then Ā → B̄ → Ā′ ⊃ q̄ is resolvable by induction
hypothesis since height q̄ < height q and it is enough to apply Main Lemma.

Now assume that height p = 0. We show that we may reduce to the case when
height p > 0. Then A′q/pA

′
q is a regular local ring of dimension ≥ 1 and we may

choose x in hB inducing an element from the regular system of parameters of A′q/pA
′
q.

Then the map A[X](p,X) → A′q, X → x is flat by the Local Flatness Criterion
see [2]) since the map k(p)[X](X) → A′q/pA

′
q is flat by [2, Theorem 23.1]. By

construction, A′q/(p, x)A′q is still a regular local ring. Clearly, it is enough to show
that A[X] → B[X] → A′ ⊃ q is resolvable. But now we have height p > 0, that is
the above case.

Main Lemma is a consequence of the following two lemmas.

Lemma 7. (Lifting Lemma [4, Lemma 7.1]) Let u : A → A′ be a morphism of
Noetherian rings, d ∈ A, Ā := A/(d2), Ā′ := A′/d2A′, Ã := A/(d), Ã′ := A′/dA′,
C̄ a finite type Ā-algebra and β̄ : C̄ → Ā′ a morphism of Ā-algebras. Suppose that
AnnA(d2) = AnnA(d), AnnA′(u(d)2) = AnnA′(u(d)). Then there exist a finite type
A-algebra D and a morphism w : D → A′ of A-algebras such that

(1) Ã⊗Ā β̄ factors through Ã⊗A w,

(2) π−1(hC̄) ⊂ hD, π being the surjection A′ → Ā′ and hC̄ =
√
β̄(HC̄/Ā)Ā′.

Lemma 8. (Desingularization Lemma [4, Lemma 7.2]) Let u : A → A′ be a mor-
phism of Noetherian rings, B a finite type A-algebra and v : B → A′ a morphism
of A-algebras, d ∈ A, Ã := A/(d4), Ã′ := A′/d4A′, B̃ := B/d4B. Suppose that d is
strictly standard for a certain presentation of B over A and AnnA(d2) = AnnA(d),
AnnA′(u(d)2) = AnnA′(u(d)). Let D be a finite type A-algebra and w : D → A′ an
A-morphism such that Ã⊗A v factors through Ã⊗Aw. Then there exist a finite type
A-algebra E and an A-morphism γ : E → A′ such that

(1) v, w factor through γ,
(2) HD/AE ⊂ HE/A, so hD ⊂ hE.

Indeed, let a ∈ A, A′, B be as in Main Lemma and set d = a4. Since

Ā := A/(d2)→ B̄ := B/d2B → Ā′ := A′/d2A′ ⊃ q̄ := q/d2A′
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is resolvable there exist a finite type Ā-algebra C̄ and a morphism β̄ : C̄ → Ā′ of
Ā-algebras such that hB̄ ⊂ hC̄ 6⊂ q̄ and v̄ factors through β̄. We need a lifting D of
C̄ with π−1(hC̄) ⊂ hD. We cannot find this D with Ā⊗AD ∼= C̄ or at least such that
β̄ factors through Ā ⊗A D. By Lifting Lemma there exist a finite type A-algebra
D and an A-morphism w : D → A′ such that Ã ⊗Ā β̄ factors through Ã ⊗A w and
and π−1(hC̄) ⊂ hD. Unfortunately, it is not clear that v factors through this D. So
we try to find an A-algebra E such that v, w factor through E and hD ⊂ hE By
Desingularization Lemma applied for d = a there exist a finite type A-algebra E
and an A-morphism γ : E → A′ such that v, w factor through γ and hD ⊂ hE. By
base change HB/AB̄ ⊂ HB̄/Ā and we get hBĀ

′ ⊂ hB̄ ⊂ hC̄ and so hD ⊃ hB. We have
also hD 6⊂ q because hC̄ 6⊂ q̄. Thus hB ⊂ hE 6⊂ q, which is enough.

Remark 9. We believe that the above proof of the Main Lemma provides an al-
gorithm to construct a finite type A-algebra E such that v factors through E and
hB ⊂ hE 6⊂ q. This is because D and E from the Lifting Lemma and the Desingu-
larization Lemma could be really constructed. The proofs of these lemmas could be
read in [4] and here we give only the constructions of D, E.

Construction of D

Choose (P̄i)i∈[k] strictly standard elements of C̄ over Ā such thatHC̄/Ā =
√

(P̄i)i∈[k]),

let us say P̄i ∈ ∆f̄ (i)((f̄
(i)) : Ī) for some presentation C̄ = Ā[X]/Ī, X = (X1, . . . , Xn),

where f̄ (i) is a finite subsystem of Ī. Let f1, . . . , fs be polynomials in A[X] such that
f̄j = fj + d2A[X], 1 ≤ j ≤ s generate Ī and {f̄1, . . . , f̄s} contains all elements from
f̄ (i). Set I = (d2, f1, . . . , fs) and let β̄ be given by X → x̄ = x + d2A′ for some
x ∈ A′n. Then f(x) = dz for some z ∈ A′s. Set gj(X,Z) = fj − dZj, 1 . . . j . . . s,
Z = (Z1, . . . , Zs) and g = (gj).

To every P̄i we associate a system of polynomials F (i) in A[X,Z] in the following
way: Let Pi be a lifting of P̄i to A[X]. Since PiI ⊂ (d2, f1, . . . , fr) for a certain r ≤ s
in a certain ordering of (fj) depending on i, it follows that

Pifj =
r∑

i=1

H
(i)
jt ft + d2G

(i)
j ,

for some polynomials H
(i)
jt , G

(i)
j from A[X], r < j ≤ s. Set

F
(i)
j = PiZj −

r∑

i=1

H
(i)
jt Zt − dG(i)

j , r < j ≤ s, F (i) = (F
(i)
j )r<j≤s

and D = A[X,Z]/(g, F (1), . . . , F (k)). Then D together with w : D → A′, (X,Z)→
(x, z) works.

Construction of E
Let B = A[X]/I, X = (X1, . . . , Xn), S = B ⊗A D = D[X]/I and α : S → A′

given by b ⊗ z → v(b)w(z). Clearly, d is strictly standard also for S over D. Set
Ã = A/d4A. By the previous construction w̃ = Ã ⊗A w and so ṽ = Ã ⊗A v factors
through D̃ = Ã ⊗A D, let us say ṽ = w̃τ̃ for some τ̃ : B̃ → D̃. Then the map
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ρ̃ : S̃ = Ã ⊗A S → D̃ given by b̃ ⊗ z̃ → τ̃(b̃)z̃ is a retraction of D̃-algebras and
w̃ρ̃ = α̃ = Ã⊗A α. Let ρ̃ be given by X → x+ d4Dn for some x ∈ Dn.

Since d is strictly standard there exists a finite system of polynomials f = (fi)1≤i≤r
in I such that d ≡ P modulo I for a certain P ∈ ∆f ((f) : I) (in D[X]). We have
I(x) ≡ 0 modulo d4 and so P (x) ≡ d modulo d4 in D. Thus P (x) = ds for a certain
s ∈ D with s ≡ 1 modulo d.

Let P =
∑

ν NνMν , where Mν are the r × r-minors of (∂f/∂X). If M1 is given
by the first columns we have M1 = detH1, where H1 is obtained adding down to
(∂f/∂X) as a border the block (0|Idn−r). Similarly define the n square matrices Hν

such that detHν = Mν . Clearly the first r rows of all Hν coincide. Let G′ν be the
adjoint matrix of Hν and Gν = NνG

′
ν . We have

∑

ν

GνHν =
∑

ν

NνMνIdn = P Idn

and so

dsIdn = P (x)Idn =
∑

ν

Gν(x)Hν(x).

Let α be given by X → y ∈ A′n. Set x′ = w(x). We have y − x′ ∈ d4A′n, let us say
y − x′ = d3ε for ε ∈ dA′n. Then t(ν) := Hν(x)ε satisfies

∑

ν

Gν(x)t(ν) = P (x)ε = dsε

and so

s(y − x′) = d2
∑

ν

Gν(x)t(ν).

As the first r rows of Hν coincide we see that t(ν) = (u1, . . . , ur, t
(ν)
r+1, . . . , t

(ν)
n ), where

ui are independent of ν. Let

h = s(X − x)− d3W − d2
∑

ν

Gν(x)T (ν),

where W = (W1, . . . ,Wn) and T (ν) = (U1, . . . , Ur, T
(ν)
r+1, . . . , T

(ν)
n ) are new variables

and T = (T (ν)). The kernel of the map ϕ : D[X,T,W ] → A′ given by X → y,
T (ν) → t(ν), W → 0 contains h. Since

s(X − x) ≡ d3W + d2
∑

ν

Gν(x)T (ν) modulo h

and

f(X)− f(x) ≡
∑

j

∂f/∂Xj(x)(Xj − xj)

modulo higher order terms in Xj − xj by Taylor’s formula we see that for m =
maxi deg fi we have

smf(X)− smf(x) ≡
∑

j

sm−1∂f/∂Xj(x)[d3Wj + d2
∑

ν

Gν(x)T
(ν)
j ] + d4Q′
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modulo h where Q′ ∈ D[W,T ]r. Set Q = dQ′ +
∑

j s
m−1∂f/∂Xj(x)Wj. We have

f(x) = d3c for some c ∈ dDr. It is not hard to see that g = smc + smU + Q is in
the kernel of ϕ. Set E = D[X,W, V ]/(I, g, h) and let γ be the map induced by ϕ.
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EXTRA LUMINY 2. APPROXIMATION IN NESTED SUBRINGS
AND STRONG ARTIN APPROXIMATION

DORIN POPESCU

Lemma 3 below was done by Guillaume in the case when some solutions are in
Â[x] and not in Â[x]h. It is easier to understand and I think you should follow his
proof.

Let (A,m, k) be a local ring. An essentially etale local A-algebra B is an etale
neighborhood of A if B ⊗A k ∼= k.

Theorem 1. ([7]) A local A-algebra B is an etale neighborhood of A if and only if
B ∼= (A[T ]/(g))(m,T ), g being a monic polynomial in T over A such that g(0) ∈ m,
∂g/∂T (0) 6∈ m.

Theorem 2. ([7]) The filtered colimit of all etale neighborhood of A is a flat local A-
algebra Ah with the property that for every Henselian local A-algebra C there exists
an unique local A-morphism Ah → B. If A is Noetherian then Ah is too.

The ring Ah defined above is the Henselization of A.

Lemma 3. Let Â be the completion of A, A[x]h, x = (x1, . . . , xn), Â[x]h be the

Henselizations of A[x](m,x) respectively Â[x](m,x), f = (f1, . . . , fr) a system of poly-
nomials in Y = (Y1, . . . , YN) over A[x]h and 1 ≤ t < N and c be some positive
integers. Suppose that A has the property of approximation and f has a solution
ŷ = (ŷ1, . . . , ŷN) in Â[x]h such that ŷi ∈ Â for all i ≤ t. Then there exists a solution

y = (y1, . . . , yN) of f in A[x]h such that yi ∈ A for all i ≤ t and y ≡ ŷ mod mcÂ[x]h.

Proof. Take an etale neighborhood B of Â[x](m,x) such that ŷi ∈ B for all t < i ≤ N .

Then B ∼= (Â[x, T ]/(ĝ))(m,x,T ) for some monic polynomial ĝ in T over Â[x] with

ĝ(0) ∈ (m,x) and ∂ĝ/∂T (0) 6∈ (m,x), let us say ĝ = T e+
∑e−1

j=0(
∑

k∈Nn,|k|<u ẑjkx
k)T j,

for some u high enough and ẑjk ∈ Â. Note that ẑ00 ∈ mÂ and ẑ10 6∈ mÂ.

We suppose that ŷi ≡
∑e−1

j=0(
∑

k∈Nn,|k|<u ŷijkx
k)T j mod ĝ for some ŷijk ∈ Â,

t < i ≤ N . Actually, we should take ŷi as a fraction but for an easier expres-
sion we will skip the denominator. Substitute Y +

i =
∑e−1

j=0(
∑

k∈Nn,|k|<u Yijkx
k)T j

in f and divide by the monic polynomial G = T e +
∑e−1

j=0(
∑

k∈Nn,|k|<u Zjkx
k)T j in

Â[x, T, Y1, . . . , Yt, (Yij), (Zj)], where (Yijk), (Zjk) are new variables.
We get

fp(Y1, . . . , Yt, Y
+) ≡

e−1∑

j=0

(
∑

k∈Nn,|k|<u
Fpjk(Y1, . . . , Yt, (Yijk), (Zjk))x

kT j mod G,

1 ≤ p ≤ r. Then ŷ is a solution of f in B if and only if ŷ1, . . . , ŷt, (ŷijk), (ẑjk)) is

a solution of (Fpjk) in Â. As A has the property of approximation we may choose
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a solution (y1, . . . , yt, (yijk), (zjk)) of (Fpjk) in A which coincide modulo mcÂ with

the former one. Then yi =
∑e−1

j=0(
∑

k∈Nn,|k|<u(yijk))x
kT j, t < i together with yi,

i ≤ t form a solution of f in the etale neighborhood B′ = (A[x, T ]/(g))(m,x,T ), g =

T e +
∑e−1

i=0 (
∑

k∈Nn,|k|<u zjkx
k)T j of A[x](m,x), which is contained in A[x]h. Clearly, y

is the wanted solution. �

The following theorem generalizes the above lemma in the same idea. The proof
does not go by recurrence using the above lemma (see [6, Proposition 3.5] for a
proof).

Proposition 4. In the setting of the above lemma, let 0 ≤ s1 ≤ . . . ≤ sN ≤ n and
c be some non-negative integers. Suppose that A has the property of approximation
and f has a solution ŷ = (ŷ1, . . . , ŷN) in Â[x]h such that ŷi ∈ Â[x1, . . . , xsi ]

h for all
1 ≤ i ≤ N . Then there exist a solution y = (y1, . . . , yN) of f in A[x]h such that

yi ∈ A[x1, . . . , xsi ]
h for all 1 ≤ i ≤ N and y ≡ ŷ mod mcÂ[x]h.

The idea of the following theorem as well as of the above proposition we got in
1977 from H. Kurke and G. Pfister.

Theorem 5. (Popescu [5], [6, Theorem 3.6]) Let (A,m) be an excellent Henselian

local ring, Â be the completion of A, A[x]h, x = (x1, . . . , xn), be the Henselization
of A[x](m,x), f = (f1, . . . , fr) be a system of polynomials in Y = (Y1, . . . , YN) over
A[x]h and 0 ≤ s1 ≤ . . . ≤ sN ≤ n, c be some non-negative integers. Suppose that

f has a solution ŷ = (ŷ1, . . . , ŷN) in Â[[x]] such that ŷi ∈ Â[[x1, . . . , xsi ]] for all
1 ≤ i ≤ N . Then there exists a solution y = (y1, . . . , yN) of f in A[x]h such that

yi ∈ A[x1, . . . , xsi ]
h for all 1 ≤ i ≤ N and y ≡ ŷ mod (m,x)cÂ[[x]].

Proof. We will study the particular case when si = 0 for 1 ≤ i ≤ t and si = n
for t < i ≤ n for some 1 ≤ t < N , that is the case of Lemma 3. Then Â[x]h is
execellent Henselian and so it has the property of Artin approximation. Thus the
polynomial equations f(ŷ1, . . . , ŷt, Yt+1, . . . , YN) from Â[Yt+1, . . . , YN ] have a solution

(ỹt+1, . . . , ỹN) in Â[x]h such that ỹi ≡ ŷi mod (m,x)cÂ[[x]]. By Lemma 3 we find

for the solution (ŷ1, . . . , ŷt, ỹt+1, . . . , ỹN) of f in Â[x]h a solution y of f in A[x]h such
that yi ∈ A for 1 ≤ i ≤ t which coincide with the previous one modulo mcA[x]h.
The general case goes by recurrence using the above proposition instead Lemma 3.

�

Corollary 6. Let K be a field, A = K < x >, x = (x1, . . . , xn), f = (f1, . . . , fr) be
a system of polynomials in Y = (Y1, . . . , YN) over A and 0 ≤ s1 ≤ . . . ≤ sN ≤ n,
c be some non-negative integers. Suppose that f has a solution ŷ = (ŷ1, . . . , ŷN) in
K[[x]] such that ŷi ∈ K[[x1, . . . , xsi ]] for all 1 ≤ i ≤ N . Then there exists a solution
y = (y1, . . . , yN) of f in K < x > such that yi ∈ K < x1, . . . , xsi > for all 1 ≤ i ≤ N
and y ≡ ŷ mod (m,x)cK[[x]].

The above corollary answers positively a question of M. Artin (see [1]). An at-
tempt to prove it was done in [3].
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Corollary 7. The Weierstrass Preparation Theorem holds for the algebraic power
series over a field.

Proof. Let f ∈ K < x >, x = (x1, . . . , xn) be an algebraic power series such that
f(0, . . . , 0, xn) 6= 0. By Weierstrass Preparation Theorem f is associated in divisi-
bility with a monic polynomial ĝ = xun +

∑u−1
i=0 ẑix

i
n ∈ K[[x1, . . . , xn−1]][xn] for some

ẑi ∈ (x1, . . . , xn−1)K[[x1, . . . , xn−1]]. Thus the system F1 = f − Y (xun +
∑u−1

i=0 Zix
i
n),

F2 = Y U − 1 has a solution ŷ, û, ẑi in K[[x]] such that ẑi ∈ K[[x1, . . . , xn−1]]. By
Corollary 6 there exists a solution y, u, zi in K < x > such that
zi ∈ K < x1, . . . , xn−1 > which is congruent modulo (x) with the previous one. Thus
y is invertible and f = yg, where g = xun +

∑u−1
i=0 zix

i
n ∈ K < x1, . . . , xn−1 > [xn].

By unicity of the (formal) Weierstrass Preparation Theorem we get in fact u = û,
y = ŷ, zi = ẑi and so g = ĝ. �

The idea to apply ultrapower methods to the strong Artin approximation comes
from [2] (see also [4]). We start with some preparations. Let D be a filter on N,
that is a family of subsets of N satisfying

1) ∅ 6∈ D,
2) if s, t ∈ D then s ∩ t ∈ D,
3) if s ∈ D, s ⊂ t ⊂ N then t ∈ D.
An ultrafilter is a maximal filter in the set of filters on N with respect to the

inclusion. A filter D on N is an ultrafilter if and only if N \ s ∈ D for all s ⊂ N
which is not in D. An ultrafilter is nonprincipal if it contains the filter of all cofinite
subsets of N.

The ultrapower A∗ of a ring A with respect to a nonpricipal ultrafilter D is the
quotient of AN by the ideal ID of all (xn)n∈N) such that the set {n ∈ N : xn = 0} ∈
D. Denote by [(xn)] the class modulo ID of all (xn) ∈ AN. Assigning to a ∈ A the
constant sequence [(a, a, . . .)] we get a ring morphism ϕA : A→ A∗.

Lemma 8. Suppose that (A,m) is a Noetherian local ring. The following statements
hold:

(1) If A is a field then A∗ is a field and the field extension A∗/A is separable,
(2) A∗ is a local ring with ϕ(m)A∗ its maximal ideal,
(3) If A is Henselian then A∗ is Henselian too,
(4) A∗ is not Noetherian if A is not Artinian,
(5) The separation A1 = A∗/m∞, m∞ = ∩j∈Nϕ(mj)A∗ of A∗ in the m-adic

topology is a complete Noetherian local ring,

(6) ϕ and the composite map u : A
ϕ−→ A∗ → A1 are flat,

(7) If A is excellent then u is regular.

The proof of this lemma is given on pages 328-331 of [6]. Next proposition shows
the connection of ultraproducts with the strong Artin approximation.

Proposition 9. The following statements are equivalent:

(1) A has strong Artin Approximation,
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(2) For every finite system of polynomial equations f over A, for every positive
integer c and for every solution solution ỹ of f in A∗ modulo m∞ there exists
a solution y of f in A∗ such that y ≡ ỹ modulo mcA∗.

Proof. (i) ⇒ (ii). Let f , ỹ = [(yn)] be like in (ii) and ν : N → N the Artin
function associated to f . In particular we have f(ỹ) ≡ 0 mod mν(c)A∗. Thus the
set s = {n ∈ N : f(ỹn) ≡ 0 mod mν(c) ∈ D}. Then for every n ∈ s there exists
a solution yn of f in A such that yn ≡ ỹn mod mc. Set yn = 0 for n 6∈ s. Then
y = [(yn)] is a solution of f in A∗ such that y ≡ ỹ mod mcA∗.

(ii) ⇒ (i). Assume that there exists a finite system of polynomials f in some
variables Y over A which has no Artin function; that is there exists a positive
integer c such that

(∗) For every n ∈ N there exists ỹn in A such that f(ỹn) ≡ 0 mod mn but there
exists no solution y′n of f in A such that y′n ≡ ỹn mod mc.

Then ỹ = [(ỹn)] is a solution of f in A∗ mod mrA∗ for all r ∈ N. Thus f(ỹ) ≡ 0
mod m∞. By (ii) there exists a solution y of f in A∗ such that y ≡ ỹ modulo mcA∗.
Then the set s = {n ∈ N : f(yn) = 0,yn ≡ ỹn mod} ∈ D is nonempty. Note that
yn for some n ∈ s contradicts (∗). �
Theorem 10. (Popescu [5], [6]) An excellent Henselian local ring has the property
of strong approximation.

Proof. Let (A,m) be an excellent Henselian local ring, D be a nonprincipal ultrafilter
on N, A∗ the ultrafilter of A with respect to D, and u : A → A1 the regular
morphism defined in Lemma 8 (7). By Proposition 9 it is enough to show that given
a system of polynomial equations h in Z = (Z1, . . . , Zs) over A, a positive integer
c and z̃ a solution of h in A∗ modulo m∗∞ there exists a solution z of h in A∗ such
that z ≡ z̃ mod mcA∗. By General Neron Desingularization applied to ψA the
A-morphism v : B = A[Z]/(h) → A1, Z → z̃ mod m∗∞ factors through a smooth
A-algebra of type C = (A[Y ]/(f))g Y = (Y1, . . . , YN), where f = (f1, . . . , fr), r ≤ N ,
are polynomials in Y over A and g belongs to the ideal ∆f generated by all r × r-
minors of the Jacobian matrix (∂fi/∂Yj), let us say v = wq, w : C → A1, q : B → C.

Then ŷ = w(Ŷ ) is a solution of f in A1 such that g(ŷ) = w(ĝ) 6∈ mA1. Let ỹ be a
lifting of ŷ to A∗. In particular, f(ỹ) ≡ 0 mod mcA∗ = g2(ỹ)mcA∗. But A∗ is a
Henselian local ring by Lemma 8 (3) and so by the Implicit Function Theorem we
get a solution y of f in A∗ such that y ≡ ỹ mod mcA∗ = g(ỹ)mcA∗. Then we get

an A-morphism u : C → A∗ by Y → y. Clearly, z = uq(Ẑ) is a solution of h in A∗

such that z ≡ z̃ mod mcA∗. �
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ARTIN APPROXIMATION, VERSAL DEFORMATIONS AND
MAXIMAL COHEN-MACAULAY MODULES

DORIN POPESCU

In November 1980 I visited MIT, where Prof. M. Artin showed me the following
theorem.

Theorem 1. (Ploski [5]) Let C{x}, x = (x1, . . . , xn), f = (f1, . . . , fs) be some
convergent power series from C{x, Y }, Y = (Y1, . . . , YN) and ŷ ∈ C[[x]]N with
ŷ(0) = 0 be a solution of f = 0. Then the map v : B = C{x, Y }/(f)→ C[[x]] given
by Y → y factors through an A-algebra of type B′ = C{x, Z} for some variables
Z = (Z1, . . . , Zs), that is v is a composite map B → B′ → C[[x]].

This result showed me that it is possible to get a kind of Neron Desingularization
in dimension > 1, and gave me power to prove later the following theorem.

Theorem 2. (General Neron Desingularization, Popescu [6], [7], Swan [12], Spi-
vakovski [11]) Let u : A → A′ be a regular morphism of Noetherian rings and B a
finite type A-algebra. Then any A-morphism v : B → A′ factors through a smooth
A-algebra C, that is v is a composite A-morphism B → C → A′.

H. Hauser asks me if this theorem does not imply somehow Ploski’s result at
least in the case when f are polynomials in Y . My positive answer is the following
theorem.

Theorem 3. Let (A,m) be an excellent Henselian local ring, Â its completion, B

a finite type A-algebra and v : B → Â an A-morphism. Then v factors through an
A-algebra of type A < Z >= A[Z]h for some variables Z = (Z1, . . . , Zs), that is
A < Z > is the Henselization of A[Z](m,Z).

Proof. By Theorem 2 we see that v factors through a smooth A-algebra B′, let us say

v is the composite map B → B′ v′−→ Â. Using the local structure of smooth algebras
given by Grothendieck we may assume that a B′

v′−1(mÂ)
is a localization of a smooth

A-algebra of type (A[Z, T ]/(g))g′h, where Z = (Z1, . . . , Zs), g
′ = ∂g/∂T . Choose h

such that v′ factors through C = (A[Z, T ]/(g))g′h let us say v′ is the composite map

B′ → C
w−→ Â.

Suppose that w is given by (Z, T ) → (ẑ, t̂) ∈ Â. We claim that we may reduce
to the case when ẑ(0) = 0, t̂(0) = 0. Indeed, choose z0 ∈ AN , t0 ∈ A, such that

(z0, t0) ≡ (ẑ, t̂) modulo mÂ and set ẑ′ = ẑ − z0 ∈ mÂ, t̂′ = t̂− t0 ∈ mÂ. Changing
(Z, T ) by (z0 + Z ′, to + T ′), Z ′ = (Z ′

1, . . . , Z
′
N) in C and correspondingly (ẑ, t̂) by

(z0 + ẑ′, t0 + t̂) in Â we get our claim fulfilled.

Clearly w extends to a map w′ : C ′ = (A < Z > [T ]/(g))g′h → Â and we have
C ′ ∼= A < Z > since C ′ is an etale neighborhood of A < Z >. �
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The following theorem was conjectured by M. Artin in [2] and it is a consequence
of Theorem 2.

Theorem 4. (Popescu [6], [9]) An excellent Henselian local ring has the property
of Artin approximation.

This theorem follows easily from Theorem 2 using the Implicit Function Theo-
rem. But it is much easier to apply Theorem 3. Indeed, let (A,m) be an excellent
Henselian local ring, f = (f1, . . . , fr) some polynomials from A[Y ], Y = (Y1, . . . , YN)

and ŷ ∈ ÂN a solution of f = 0. We will show that f has a solution in A. Set
B = A[Y ]/(f) and v : B → Â the map given by Y → ŷ. By Theorem 3 v fac-
tors through A < Z > for some Z = (Z1, . . . , Zs), that is v is the composite map

B
g−→ A < Z >→ Â. Set y = g(Y + (f)). Then y(0) is a solution of f in A.

Theorem 5. (Popescu [8]) Let (A,m) be a Noetherian local ring with the completion

map A→ Â regular. Then for every finite type A-algebra B there exists a function
λ : N → N such that for every positive integer c and every morphism v : B →
A/mλ(c) there exists a smooth A-algebra C and two A-algebra morphisms t : B → C,

w : C → A/mc such that wt is the composite map B
v−→ A/mλ(c) → A/mc.

Remark 6. Can be λ computed? The proof from [8] it is not constructive. Perhaps
λ can be related with the Artin function associated to f , which is defined by B =
A[Y ]/(f). More precisely, λ could be related with the Artin function of f with

respect to Â, or A < Z >, Z = (Z1, . . . , Zs). I do not know to choose this s.

Let (A,m) be an excellent Henselian local ring, Â its completion and MCM(A)

(resp. MCM(Â)) the set of isomorphism classes of maximal Cohen Macaulay mod-

ules over A (resp. Â). Assume that A is an isolated singularity. Then a maxi-

mal Cohen-Macaulay module is free on the punctured spectrum. Since Â is also
an isolated singularity we see that the map ϕ :MCM(A) →MCM(Â) given by

M → Â⊗AM is surjective by a theorem of Elkik [3, Theorem 3].

Theorem 7. (Popescu-Roczen, [10]) ϕ is bijective.

Corollary 8. In the hypothesis of the above theorem if M ∈ MCM(A) is indecom-

posable then Â⊗AM is indecomposable too.

Proof. Assume that Â⊗AM = N̂1⊕N̂2. Then N̂i ∈MCM(Â) and by surjectivity of ϕ

we get N̂i = Â⊗ANi for some Ni ∈MCM(A). Then Â⊗AM ∼= (Â⊗AN1)⊕(Â⊗AN2)
and the injectivity of ϕ gives M ∼= N1 ⊕N2. �
Remark 9. If A is not Henselian then the above corollary is false. For example
let A = C[X,Y](X,Y)/(Y

2 − X2 − X3). Then M = (X, Y )A is indecomposable

in MCM(A) but Â ⊗A M is decomposable. Indeed, for û =
√

1 +X ∈ Â we have

Â⊗AM = (Y − ûX)Â⊕ (Y − ûX)Â.

Remark 10. Let Γ(A), Γ(Â) be the so called the AR-quivers of A, Â. Then ϕ

induces also an inclusion Γ(A) ⊂ Γ(Â) (see [10]).
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Remark 11. It is known that MCM(Â) is finite if and only if Â is a simple singular-
ity. What about a complex unimodal singularity R? Certainly in this case MCM(R)
is infinite but may be it has a special property, which characterizes the unimodal
singularities. For this purpose it would be necessary to describe somehow MCM(R)
at least in some special cases. Small attempts are done by Andreas Steenpass in his
PhD thesis.

Next, we see how to get algebraic versal deformations using a special form of
Artin approximation. Let D = K < Z >, A = K < T > /J , Z = (Z1, . . . , Zs),
T = (T1, . . . , Tn) and N = D/(f1, . . . , fd). A deformation of N over A is a P = K <
T,Z > /(J) ∼= (A⊗K D)h-module L such that

1) L⊗A K ∼= N ,
2) L is flat over A,

where above Bh denotes the Henselization of a local ring B. The condition 1) says
that L has the form P/(F1, . . . , Fd) with Fi ∈ K < T,Z >, Fi ∼= fi modulo (T ) and
2) says that

2′) TorA1 (L,K) = 0
by the Local Flatness Criterion since L is (T )-adically ideal separated because P is

local Noetherian. Let P e ν−→ P d → P → L→ 0 be part of a free resolution of L over
P , where the map P d → P is given by (F1, . . . , Fd). Then 2′) says that tensorizing
with K⊗A− the above sequence we get an exact sequence De → Dd → D → N → 0
because P is flat over A. Therefore, 2′) is equivalent with

2′′) For all g ∈ Dd with
∑d

i=1 gifi = 0 there exists G ∈ K < T,Z >d with G ≡ g

modulo (T ) such that G modulo J ∈ Im ν, that is
∑d

i=1GiFi ∈ (J).
We would like to construct a versal deformation L (see [4, pages 157-159]), that

is for any A′ = K < U > /J ′, U = (U1, . . . , Un′), P
′ = (A′ ⊗K D)h and L′ =

P ′/(F ′) a deformation of N to A′ there exists a morphism α : A → A′ such that
P ′ ⊗P L ∼= L′, where the structural map of P ′ over P is given by α. If we replace
above the algebraic power series with formal power series then this problem is solved
by Schlessinger in the infinitesimal case followed by some theorems of Elkik and M.
Artin. Set Â = K[[T ]]/(J), P̂ = (Â⊗K D)h . We will assume that we have already

L such that L̂ = P̂ ⊗P L is versal in the frame of complete local rings. How to get
the versal property for L in the frame of algebraic power series?

Let A′, P ′, L′ be as above. Since L̂ is versal in the frame of complete local rings
there exists α̂ : Â→ Â′ such that P̂ ′ ⊗P̂ L̂ ∼= L̂′ = P̂ ′ ⊗P ′ L′, where the structure of

P̂ ′ as a P̂ -algebra is given by α̂. Assume that α̂ is given by T → t̂ ∈ (U)K[[U ]]n.
Then we have

i) J(t̂) ≡ 0 modulo (J ′).
On the other hand we may suppose that α̂ induces an isomorphism P̂ ′⊗P̂ L̂→ L̂′

which is given by (T, Z)→ (t̂, ẑ) for some ẑ ∈ (U,Z)K[[U,Z]]s with ẑ ≡ Z modulo
(U,Z)2 and the ideals (F (t̂, ẑ)), (F ′) of K[[U,Z]] coincide. Thus there exists an

invertible d× d-matrix Ĉ = (Ĉij) over K[[U,Z]] with

ii) F ′
i =

∑d
j=1 ĈijFj(t̂, ẑ)).
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In this moment we would like to apply a special form of Artin approximation
namely the so called Artin approximation with nested subring condition.

Theorem 12. (Popescu [6], [9]) Let K be a field, A = K < x >, x = (x1, . . . , xn),
f = (f1, . . . , fr) ∈ K < x, Y >r, Y = (Y1, . . . , YN) and 0 ≤ s ≤ n, 1 ≤ t ≤ N , c
be some non-negative integers. Suppose that f has a solution ŷ = (ŷ1, . . . , ŷN) in
K[[x]] such that ŷi ∈ K[[x1, . . . , xs]] for all 1 ≤ i ≤ t. Then there exists a solution
y = (y1, . . . , yN) of f in K < x > such that yi ∈ K < x1, . . . , xs > for all 1 ≤ i ≤ t
and y ≡ ŷ mod (x)cK[[x]].

By the above theorem we may find t ∈ (U)K < U >n and z ∈ (U,Z)K < U,Z >s,

Cij ∈ K < U,Z > satisfying i), ii) and such that t ≡ t̂, z ≡ ẑ, Cij ≡ Ĉij modulo

(U,Z)2. Note that det(Cij) ≡ det Ĉ modulo (U,Z)2 and so (Cij) is invertible. It
follows that α : A → A′ given by T → t is the wanted one, that is P ′ ⊗P L ∼= L′,
where the structure of P ′ as a P -algebra is given by α.
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