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Gilmer and Heinzer proved that given a reduced ring R, a polynomial f
divides a monic polynomial in R[X] if and only if there exists a direct
sum decomposition of R = R0 ⊕ · · · ⊕ Rm (m ≤ deg f), associated to a
fundamental system of idempotents e0, ..., em, such that the component of
f in each Ri[X] has degree coefficient which is a unit of Ri. We propose
to give an algorithm to explicitly find such a decomposition. Moreover, we
extend this result to divisors of doubly monic Laurent polynomials.

INTRODUCTION

Let R be a ring and U(X) the multiplicative subset of R[X] formed by monic polynomials,
that is polynomials with degree coefficient 1. The ring R〈X〉 = R[X]U(X) received a considerable
amount of attention due to its role in Quillen’s solution to Serre’s conjecture. As soon as Serre’s
conjecture was settled, there were many research papers presenting results and algorithms
dealing with Serre’s conjecture and its ramifications [2,4,6,7,8,9,10].

In [2], the authors determined by an abstract way the group of units of R〈X〉, this is equiva-
lent to determining the saturation U(X)∗ of U(X), that is all divisors of monic polynomials over
R. Our purpose in this paper is to determine for a given polynomial f in R[X] dividing some
monic polynomial, the explicit decomposition into a direct sum of polynomials with invertible
degree coefficients. Our proof is constructive, it does not use that of Gilmer and Heinzer and
extends it to the non reduced case.

Also, we give the analogue to this result for doubly monic Laurent polynomials, that is
polynomials in R[X, X−1] such that the coefficient of the highest and lowest terms are equal
to 1. Furthermore, we prove that any doubly monic Laurent polynomial divides some monic
polynomial in X + X−1. As a consequence, we retrieve a constructive proof of the fact that
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finitely generated projective modules over K[X±1
1 , X±1

2 . . . , X±1
n ], K a field, are stably free.

1. THE UNITS OF R〈X〉

Proposition 1. Let f = a0 + a1X + · · · + anXn ∈ R[X].
1) If R is reduced, then f ∈ U(X)∗ if and only if there exists a direct sum decomposition
R = R0 ⊕ · · ·⊕Rm (m ≤ n) of R such that if f = f0 + · · ·+ fm is the decomposition of f with
respect to the induced decomposition R[X] = R0[X] ⊕ · · · ⊕ Rm[X], then the degree coefficient
of fi is a unit of Ri for each i.
2) If R is not reduced, then f ∈ U(X)∗ if and only if there exist a nilpotent polynomial N and a
direct sum decomposition R = R0⊕· · ·⊕Rm (m ≤ n) of R such that if f−N = f0+· · ·+fm is the
decomposition of f −N with respect to the induced decomposition R[X] = R0[X]⊕ · · ·⊕Rm[X],
then the degree coefficient of fi is a unit of Ri for each i.
3) f ∈ U(X)∗ if and only if 〈a0, . . . , an〉 = R and, for each j ∈ {0, . . . , n}, we can find βj ∈ R
and kj ∈ N such that (aj(ajβj − 1))kj ≡ 0 mod 〈aj+1, . . . , an〉.
4) f ∈ U(X)∗ if and only if 〈a0, . . . , an〉 = R and, for each prime ideal p of R, the relations
aj+1, . . . , an ∈ p, aj /∈ p, imply that aj is a unit modulo p.

Proof. We make the proof without assuming we have an equality test inside R.

1) If R is reduced. Let f = a0 + a1X + ... + anXn and g = b0 + b1X + ... + bdXd in R[X]
such that fg = c0 + c1X + ... + cmXm with cm = 1.
We prove the result by induction on n + d−m.

– If m = n + d then anbd = 1.
– If m < n+d. We write all the relations between the ai’s, bj’s and ck’s in which an appears:

(S) :






anbd = ε0 (= 0)
anbd−1 + an−1bd = ε1

anbd−2 + an−1bd−1 + an−2bd = ε2
...

anb0 + an−1b1 + ... + an−vbv = εd

Where v = min{d, n}, εi = 0 if i < n + d−m.

If m < n, then multiplying each kth equality in (S) by ak+1
n , we obtain the system

(S ′) :






anbd = 0
a2

nbd−1 = 0
...

ad+1
n b0 = 0

Thus, ad+1
n g = 0 and ad+1

n fg = 0. Hence, ad+1
n = 0, and an = 0 since R is reduced. It follows

by induction that all ai’s and bi’s with i > m are zero and we can assume n, d ≤ m.
By identification, εn+d−m = cm = 1.
Considering the (n + d−m + 1)th equality in (S) and multiplying each kth equality (1 ≤ k ≤
n + d−m) by ak−1

n , we obtain

an+d−m+1
n bm−n = an+d−m

n .
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We need the following lemma.

Lemma 1. Let R be a ring. If rn+1y = rn for some r, y ∈ R and n ∈ N, then r2y − r
is nilpotent and rnyn is idempotent. If in addition, R is reduced then ry is idempotent and
rR = (ry)R.

Proof. Let u = ry. It is clear that rn(u − 1) = 0, rn(un − 1) = 0 and un(un − 1) = 0. In the
reduced case, we get r(u− 1) = 0, u(u− 1) = 0 and rR = ruR ⊆ uR ⊆ rR. ♦

Using lemma 1, e0 = anbm−n is idempotent and a2
nbm−n − an = an(e0 − 1) = 0.

Set e′0 = 1− e0, R0 = Re0, R′
0 = Re′0, f0 = fe0, g0 = ge0, f ′0 = fe′0, g′0 = ge′0. In R0, e0an is a

unit, so deg(f0) = n and deg(g0) = m− n.
We have R = R0⊕R′

0. In R′
0, deg f ′0g

′
0 = m, the degree coefficient of f ′0g

′
0 is a unit, deg(f ′0) < n

(since ane′0 = 0), and deg(g′0) ≤ d. We are done by induction.
Concretely, if we continue the process, we find an idempotent e1 in R′

0 (e1 is also an idempo-
tent in R) and a decomposition R = R0⊕R1⊕R′

1, and so on. So we find a priori n+d−m+1
terms in the final decomposition, where n, d ≤ m since we first killed all ai’s and bi’s with i > m.
In the most general case this means m+1 terms in the final decomposition. Remark that with-
out zero test inside R it is possible that we do not know which terms in the decomposition are
useless, i.e., zero.

2) General case. R is not necessarily reduced.

– Let N be the nilradical of R. The proof for the case “R reduced” works with R/N . In
the first case we have proved ai = bi = 0 for i > m and we computed idempotents e0, . . . , em

verifying
∑

ei = 1, eiej = 0 if j *= i, eiaj = 0 if j > m − i (i.e., deg(eif) ≤ m − i), eibk = 0 if
k > i (i.e., deg(eig) ≤ i) and ei(am−ibi − 1) = 0.
In the general case we explicitly get with the same proof all these equalities modulo N , i.e.,
we know for each previous equality t = 0 (in the reduced case) an exponent k for which, in the
general case tk = 0. This gives the desired result.

It is of interest to recall a folklore result stating that each idempotent in R/N lifts in R.
In more details, let r ∈ R be an approximate root of the polynomial f(X) = X2 −X, that is
f(r) = r2 − r ∈ N . Say f(r) = r2 − r = η = c0η, where η ∈ N and c0 = 1.
We have f ′(X) = 2X − 1 and f ′(X)2 = 4f(X) + 1. Thus, f ′(r) = 1 + 4η is invertible. We
replace “à la Newton” the approximate root r by r + h as follows

f(r + h) = f(r) + hf ′(r) + h2f2(r, h), f2(r, h) ∈ R.

Taking h = −η
f ′(r) and setting r1 = r0 − η

f ′(r) , we obtain f(r1) = c1η2 for some c1 ∈ R.

Repeating this process, we find r2, c2, . . . , rk, ck ∈ R such that f(r2) = c2η4, . . . , f(rk) = ckη2k
.

For sufficiently large k, we get f(rk) = 0 and r − rk ∈ 〈η〉 ⊆ N .

Example: Let n = 4, d = 5, m = 3. We have ad+1
n = a6

4 = 0 and bn+1
d = b5

5 = 0. Thus, in
the ring R/ 〈a4, b5〉, the degrees are cut down at 3 and 4, and consequently b4

4 = 0. Here, one
may wonder if it is possible to explicitly bound the nilpotence order of b4 in R. Since b4

4 = 0
in R/ 〈a4, b5〉, we obtain an equality b4

4 = a4A + b5B in R (A and B can be computed but it is
not necessary). Hence, in R, b4×10

4 = a6
4A

′ + b5
5B

′ = 0. This suggests that a function bounding
the nilpotence order will be exponential at n and d.
In the ring R/ 〈a4, b5, b4〉, the degrees are cut down at 3 and 3, that is n = d = m = 3, and
we are in the second case. The equality an+d−m+1

n bm−n = an+d−m
n signifies that a4

3b0 = a3
3. The

Lemma says that (r(ry−1))3 = 0 with r = a3 and y = b0 in R/ 〈a4, b5, b4〉. One can precisely get
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(r(ry − 1))3×(40+5+6−2) = (r(ry − 1))147 = 0 in R. In S = R/ 〈a4, b5, b4, a3(a3b0 − 1)〉, a3b0 = ry
is idempotent and corresponds to an idempotent of R. Indeed, ry is an approximate solution
of the equation X2−X = 0 which lifts “à la Hensel” since 2X−1 is, at X = ry, a unit: indeed
(2X − 1)2 = 1 + 4(X2 −X) and 4(X2 −X) is, at X = ry, nilpotent with order less than 147.
Denote by e = a3b0+ a nilpotent element, the idempotent lifting a3b0 in R. This decomposes R
and S into two parts. In eS + S/ 〈e− 1〉, f is quasimonic with degree 3 and b1 = b2 = b3 = 0.
This means that in eR + R/ 〈e− 1〉, f is quasimonic with degree 3 and b1, b2, b3 are nilpotent.
And so on . . .

– Another wording:

With the same notations as in the reduced case, we prove the result by induction on n.

If an+d−m
n = 0 or ad+1

n = 0.
Let k = max{n + d − m, d + 1}, we have ak

n = 0. Since ((f − anXn)g − fg)k = 0, we can
explicitly find a polynomial h in R[X] such that (f − anXn)gh = (fg)k is monic with degree
mk, and we are done by the induction hypothesis.

If an+d−m
n *= 0 and ad+1

n *= 0.
By the calculations done in the reduced case, we have

an+d−m+1
n bm−n = an+d−m

n .

By Lemma 1, e0 = (anbm−n)n+d−m is idempotent and α = an(anbm−n − 1) is nilpotent.
We have an = a2

nbm−n − α where αn+d−m = 0. Hence a2
n = a3

nbm−n − αan and an = a3
nb2

m−n −
αanbm−n − α. And so on, we can see that an = bn+d−m

m−n an+d−m+1
n + β = an(anbm−n)n+d−m + β,

where βn+d−m = 0. Thus with a′n = ane0 = bn+d−m
m−n an+d−m+1

n it holds

b2
m−n(a′n)2 − bm−na′n = b2

m−na
2
n(anbm−n)2(n+d−m) − bm−nan(anbm−n)n+d−m = 0

as bm−nan+d−m+1
n = an+d−m

n . As bm−na′n is idempotent, bm−na′n = e0, and

e0R = bm−na′nR ⊆ a′nR = ane0R ⊆ e0R,

that is a′nR is generated by the idempotent e0.
Denoting f1 = f − anXn + a′nXn, f = f1 −N , where N is nilpotent.
We have f1g = fg + Ng and thus (f1g− fg)n+d−m = 0 and we can explicitly find a polynomial
D in R[X] such that f1gD = (fg)n+d−m monic with degree m(n + d−m).
Of course, the degree coefficient of f1 is a′n. It remains only to do as in the reduced case, just
replace f by f1, an by a′n, anbm−n by (anbm−n)n+d−m, g by gD, and m by (n + d−m)m.

3) Suppose that f ∈ U(X)∗. It is clear that one easily obtains an equality asserting that
〈a0, . . . , an〉 = R. For each j ∈ {0, . . . , n}, considering the ring R/ 〈aj+1, . . . , an〉 and reviewing
the proof of part 2), we see that the first step of the algorithm produces an equality of the form
āj

kj = 0̄ or āj
kj+1β̄j = āj

kj for some βj ∈ R. Hence, (aj(ajβj − 1))kj ≡ 0 mod 〈aj+1, . . . , an〉.
Conversely, suppose that 〈a0, . . . , an〉 = R and, that for each j ∈ {0, . . . , n}, we can find

βj ∈ R and kj ∈ N such that (aj(ajβj−1))kj ≡ 0 mod 〈aj+1, . . . , an〉. Since (an(anβn−1))kn = 0,
we have akn+1

n γn = akn
n , where γn =

∑kn

i=1 Ci
kn

(−1)kn−iai−1
n βi

n. Now, as in the proof of part 2),
we can write f = f1 −N , where f1 = f − anXn + γkn

n akn+1
n Xn, and Nkn = 0. To prove that f

divides some monic polynomial, it suffices to do the same for f1.
Denoting by e0 = (anγn)kn , e0 is idempotent by Lemma 1, R = Re0 ⊕ R(1 − e0), f1 = f1e0 +
f1(1 − e0), and the degree coefficient of f1e0 is a unit of Re0[X]. Our task is then reduced to
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prove that f1(1−e0) divides some monic polynomial in R(1−e0)[X]. Since deg(f1(1−e0)) < n
and all the hypotheses on f are inherited by f1(1− e0), the desired result can be obtained by
induction on n. Note that the condition 〈a0, . . . , an〉 = R is needed to get the induction started.

4) This equivalence was given in [2]. The condition:

aj+1, . . . , an ∈ p, aj /∈ p imply that aj is a unit modulo p

is easily seen to be necessary as a consequence of 2). The proof that the condition is sufficient
needs at least the axiom saying that any non trivial ring has a prime ideal (this is a weak
version of choice). So it cannot be constructive. However, 3) can be seen as a constructive
reformulation of 4) obtained by mean of the notion of “idealistic prime” [1,5]. ♦

Example 1. Let U and V be two indeterminates over a field K, and consider the reduced ring
R = K[U, V ]/(U2 − U,UV ) = K[u, v] = K[v]⊕K[v]u, where u2 = u and uv = 0.
Setting f = u−(1+u)X2+uX3 and g = v+uX2+(u−1)X3, we have fg = (u−v)X2−2uX4+X5.

Using the algorithm described in the proof of Proposition 1, we find:
e0 = a3b2 = u2 = u, R0 = Ru = uK[u, v], f0 = uf = u − 2uX2 + uX3, g0 = uX2, R′

0 = R1 =
R(1− u) = (1− u)K[u, v], f ′0 = f1 = (u− 1)X2, g′0 = g1 = v + (u− 1)X3.
Thus, in K[u, v] = uK[u, v]⊕ (1−u)K[u, v], the decomposition of f is f = (u−2uX2 +uX3)+
((u− 1)X2).
Of course, R0 = uK[u, v] + R, by this isomorphism f0 ↔ 1− 2X2 + X3, g0 ↔ X2;
R1 = (1− u)K[u, v] + R, by this isomorphism f1 ↔ −X2, g1 ↔ v −X3.

Example 2. Let U and V be two indeterminates over a field K such that CharK *= 2, and
consider the non reduced ring R = K[U, V ]/(U2−U,UV 2) = k[u, v] = K[v]⊕Ku⊕Kuv, where
u2 = u and uv2 = 0. The nilradical of R is N = (uv) and R/N = K[U, V ]/(U2 − U,UV ) =
K[u′, v′] with u′2 = u′ and u′v′ = 0.
Setting f = u−(1+u)X2+uX3+uvX4 and g = −v4+uX2+2v2X3−2uX4+uX5+(u−1−uv)X6,
we have fg = (u + v4)X2 − 4uX4 + (u− v2)X5 + 4uX6 − 4uX7 + X8.

- If we want to decompose R/N , we consider the images modulo N , f ′ = u′− (1 + u′)X2 +
u′X3, g′ = −v′4 + u′X2 + 2v′2X3 − 2u′X4 + u′X5 + (u′ − 1)X6, f ′g′ = (u′ + v′4)X2 − 4u′X4 +
(u′ − v′2)X5 + 4u′X6 − 4u′X7 + X8, respectively of f , g , and fg.
As in Example 1, our algorithm yields to the direct sum decompositions:

R/N = u′K[u′, v′]⊕ (1− u′)K[u′, v′],
f ′ = (u′ − 2u′X2 + u′X3) + ((u′ − 1)X2).
f − uvX4 = (u− 2uX2 + uX3) + ((u− 1)X2), where (uvX4)2 = 0.

- If we want to decompose R, using the algorithm described in the proof of Proposition 1
for the non reduced case, we have:
((f − uvX4)g − fg)2 = 0 and thus (f − uvX4)(g2(f + uvX4)) = (fg)2.
Note that g2 has degree 12 and highest coefficient 1 − u, f + uvX4 has degree 4 and highest
coefficient 2uv, whereas g2(f + uvX4) has degree 14 and highest coefficient u− 1− uv.
The first idempotent element found is e0 = (a3b13)17−16 = a3b13 = a3((g2)12(f + uvX4)1 +
(g2)11(f + uvX4)2 + (g2)10(f + uvX4)3 + (g2)9(f + uvX4)4 = uu = u.
Thus, f0 = (f − uvX4)u = u − 2uX2 + uX3, f ′0 = f1 = (f − uvX4)(1 − u) = (u − 1)X2,
R = K[u, v] = uK[u, v] ⊕ (1 − u)K[u, v], and f − uvX4 = (u − 2uX2 + uX3) + ((u − 1)X2),
where (uvX4)2 = 0.
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2. THE UNITS OF R[X,X−1]V

We consider the following regular multiplicative subsets of R[X]:

U(X) = {f ∈ R[X], f is monic},
S = {Xn, n ∈ N},
W = {f ∈ R[X], f(0) = 1},
V = U(X) ∩W = {1 + a1X + · · · + an−1Xn−1 + Xn, n ∈ N \ {0}, ai ∈ R},
V ={f ∈ R[X,X−1], the coefficient of the highest and lowest terms are equal to 1}.

Note that R[X,X−1]V = R[X]SV . By the following two propositions, we give characterizations
of the saturations of V and V . The proofs of parts 1), 2), 3) and 4) in Proposition 2 and
Proposition 3 are constructive.

Proposition 2. Let f = a0 + a1X + · · · + an−1Xn−1 + anXn ∈ R[X].
1) If R is reduced, then f ∈ V ∗ if and only if there exists a direct sum decomposition R =
R0 ⊕ · · · ⊕ Rm (m ≤ n) of R such that if f = f0 + · · · + fm is the decomposition of f with
respect to the induced decomposition R[X] = R0[X] ⊕ · · · ⊕ Rm[X], then both of the constant
and degree coefficients of fi are units in Ri for each i.
2) If R is not reduced, then f ∈ V ∗ if and only if there exist a nilpotent polynomial N and a
direct sum decomposition R = R0⊕· · ·⊕Rm (m ≤ n) of R such that if f−N = f0+· · ·+fm is the
decomposition of f −N with respect to the induced decomposition R[X] = R0[X]⊕ · · ·⊕Rm[X],
then both of the constant and degree coefficients of fi are units in Ri for each i.
3) V ∗ = {f ∈ R[X], f(0) and the degree coefficient of f are units} if and only if R is reduced
and indecomposable.
4) f ∈ V ∗ if and only if a0 is a unit and, for each j ∈ {0, . . . , n}, we can find βj ∈ R and
kj ∈ N such that (aj(ajβj − 1))kj ≡ 0 mod 〈aj+1, . . . , an〉.
5) f ∈ V ∗ if and only if a0 is a unit and, for each prime ideal p of R, the relations aj+1, . . . , an ∈
p, aj /∈ p, imply that aj is a unit modulo p.

Proof. 1) For the necessity, the system of idempotents corresponding to the direct sum de-
composition R = R0 ⊕ · · · ⊕ Rm is given by Proposition 1.1). It is clear that for each i, the
constant coefficient of fi is a unit in Ri. For the sufficiency, for each i, denote by αi and βi

respectively the inverses of the constant and degree coefficients of fi in Ri, and by ni the degree
of fi (ni ≤ n). Then (

m∑

i=0

(αi + βiX
n−ni)

)
f

has 1 as constant and degree coefficient and f ∈ V ∗.
2) Do as in Proposition 1.2).
3) By virtue of 2), it suffices to prove that the result fails if R is not reduced or is decomposable.
If R is not reduced, let γ be a nonzero nilpotent in R. Since 1 + γX is a unit in R[X], then
1+γX ∈ V ∗, while γ is not a unit. If R is decomposable, write 1 = e1 +e2, where e1 and e2 are
two orthogonal idempotents in R. Then (1 + e1X)(1 + e2X) = 1 + X and thus 1 + e1X ∈ V ∗,
while e1 is not a unit in R.
4) Do exactly as in Proposition 1.3).
5) Same remarks as for Proposition 1.4). ♦
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Proposition 3. Let f(X) = akXk + ak+1Xk+1 + · · · + alX l ∈ R[X,X−1], k, l ∈ Z.
1) f ∈ V∗ if and only if there exist n ∈ N \ {0} and m ∈ N \ {0} such that Xnf(X) ∈ U(X)∗

and Xmf(X−1) ∈ U(X)∗,
2) In the case R is reduced, f ∈ V∗ if and only if there exists a direct sum decomposition
R = R0 ⊕ ...⊕Rm of R such that if f = f0 + · · ·+ fm is the decomposition of f with respect to
the induced decomposition R[X, X−1] = R0[X,X−1] ⊕ · · · ⊕ Rm[X, X−1], then the coefficients
of the highest and lowest terms of fi are units in Ri for each i.
3) V = {f ∈ R[X,X−1], the coefficient of the highest and lowest terms are units} if and only
if R is reduced and indecomposable.
4) f ∈ V∗ if and only if 〈ak, . . . , al〉 = R and, for each j ∈ {k, . . . , l}, we can find βj, δj ∈ R
and mj, nj ∈ N such that (aj(ajβj − 1))mj ≡ 0 mod 〈aj+1, . . . , an〉 and (aj(ajδj − 1))nj ≡
0 mod 〈ak, . . . , aj−1〉.
5) f ∈ V∗ if and only if 〈ak, . . . , al〉 = R and, for each prime ideal p of R, the relations
aj+1, . . . , al ∈ p, aj /∈ p or ak, . . . , aj−1 ∈ p, aj /∈ p, imply that aj is a unit modulo p.

Proof. 1) It is clear that the condition is necessary. For the sufficiency, suppose that we can find
two polynomials g, h ∈ R[X] such that Xnf(X)h(X) ∈ U(X) and Xmf(X−1)g(X) ∈ U(X).
Then, (Xnh(X) + X−mg(X−1))f ∈ V and f ∈ V∗.
2) Using Proposition 1 and part 1), if x0, . . . , xp and y0, . . . , yq are two systems of nonzero
orthogonal idempotents associated respectively to Xnf(X) and Xmf(X−1), then denoting
{xiyj, 0 ≤ i ≤ p, 0 ≤ j ≤ q} = {ε0, . . . , εm}, we take Ri = Rεi. For the sufficiency, for
each i, denote by αi and βi respectively the inverses of the lowest and highest coefficients of fi

in Ri, and by ki and li respectively the lowest and highest degrees of fi (k ≤ ki, li ≤ l). Then

(
m∑

i=0

(αiX
k−ki + βiX

l−li)

)
f

has 1 as lowest and highest coefficient and f ∈ V∗.
3) Do exactly as in Proposition 2.3).
4) Do exactly as in Proposition 1.3).
5) Same remarks as for Proposition 1.4). ♦

It is clear that for any ring R, U(X + X−1) ⊆ V and U(X + X−1) *= V . Next, we prove
that U(X + X−1)∗ = V∗ in R[X, X−1], that is, each doubly monic Laurent polynomial divides
some monic polynomial in X + X−1.

Proposition 4. For each f ∈ V, there exists g ∈ V such that fg ∈ U(X + X−1).

Proof. Remark that a Laurent polynomial q is in R[X + X−1] iff q(X) = q(X−1). Let γ the
degree coefficient of f(X)f(X−1). We take g = γ−1f(X−1). ♦

Corollary 1. For any ring R, R[X,X−1]V = R[X,X−1]U(X+X−1) and R[X,X−1]V is a finitely
generated free R〈X + X−1〉-module generated by 1 and X.

Proof. This follows from Proposition 4 and the fact that R[X, X−1] is a finitely generated free
R[X + X−1]-module generated by 1 and X [3, Lemma 1]. ♦

We also obtain an alternative constructive proof of the following well-known result.
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Corollary 2. If K is a field then every finitely generated projective module over
K[X±1

1 , X±1
2 . . . , X±1

n ] is stably free.

Proof. We reasone by induction on n. Let P be a finitely generated projective module over
A = K[X±1

1 , X±1
2 . . . , X±1

n ]. By [4, Lemma 2.1 p. 90], we can find a finite rank free A-submodule
F of P and f ∈ A− {0} such that fP ⊆ F .
After the change of variables X1 = Y1, X2 = Y2Y m

1 ,. . ., Xn = YnY mn−1

1 , for sufficiently large
m, f becomes doubly monic in Y1. By Proposition 4, we can find g ∈ A such that fg ∈ B =
K[Y ±1

2 , . . . , Y ±1
n−1][Y1 + Y −1

1 ] and fg is monic relatively to Y1 + Y −1
1 .

Since (fg)gF ⊆ (fg)P ⊆ gF , the Towber presentation applies [5, Proposition 2.2 p. 91], where
the modules are considered as B-modules (A = B2). ♦

Note that we can also obtain a constructive proof of the fact that finitely generated projective
modules over A = K[X±1

1 , X±1
2 . . . , X±1

n ] are free using Corollary 2 and the fact that GLr(A)
acts transitively on Umr(A) for r ≥ 1 [9].
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