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Abstract

In this paper, we extend the notion of “dynamical Gröbner bases” introduced by the second
author to Dedekind rings (with zero divisors). As an application, we dynamically solve the ideal
membership problem and compute a generating set for the syzygy module over multivariate polyno-
mial rings with coefficients in Dedekind rings. We also give a partial positive answer to a conjecture
about Gröbner rings.
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Introduction

First, let us say a few words about constructive algebra. Constructive algebra can be seen as an
abstract version of computer algebra. In computer algebra, one attempts to construct efficient algo-
rithms for solving “concrete problems given in an algebraic formulation”. A problem is “concrete” if
its hypotheses and conclusion have a computational content.

Constructive algebra can be understood as a first “preprocessing” step for computer algebra that
leads to the discovery of general algorithms, even if they are not efficient. Moreover, in constructive
algebra, one tries to give general algorithms for solving virtually “any” theorem of abstract algebra.
Therefore, a first task in constructive algebra is often to define the computational content hidden in
hypotheses that are formulated in a very abstract way. For example, what is a good constructive
definition of a local ring, a valuation ring, an arithmetical ring, a ring of Krull dimension ≤ 2, and
so on? A good constructive definition must be equivalent to the usual definition given in classical
mathematics; it must have a computational content, and it must be satisfied by the usual objects (of
usual mathematics) that satisfy the abstract definition.

Let us consider the classical theorem that states “any polynomial P in K[X] is a product of
irreducible polynomials (K a field)”. This leads to an interesting problem. It seems like no general
algorithm could give the solution to this theorem. What, then, is the constructive content of this
theorem? A possible answer is as follows: when performing computations with P , proceed as if
its decomposition is known in irreducibles. At the beginning, proceed as if P were irreducible. If
something strange appears (the gcd of P and another polynomial Q is a strict divisor of P ), use this
fact to improve the decomposition of P .

This trick was invented in computer algebra as the D5-philosophy [10, 12, 22]. Following this
computational trick, one is able to compute inside the algebraic closure K̃ of K even if it is not
possible to “construct” K̃ .

The foregoing has been referred to as the “dynamical evaluation” (of the algebraic closure). Because
the method for computing Gröbner bases introduced by the second author in [30] is directly inspired
by this trick, these bases were named “dynamical Gröbner bases”.
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2 Dynamical Gröbner bases over Dedekind rings

From a logical point of view, the “dynamical evaluation” gives a constructive substitute for two
highly nonconstructive tools of abstract algebra: the Third Excluded Middle and Zorn’s Lemma.
These tools are required in order to “construct” complete prime factorization of ideals in Dedekind
rings: the dynamical evaluation allows the fully computational content of this “construction” to be
found. The paper [8] is an excellent reference regarding the foundations of dynamical methods in
algebra.

The constructive rewriting of “abstract local-global principles” is very important. In classical
proofs using this kind of principle, the argument is “let us see what happens after localization at an
arbitrary prime ideal of R”. From a computational point of view, prime ideals are overly abstract
objects, particularly if one wishes to deal with a general commutative ring. In the constructive
rereading, the argument is “let us see what happens when the ring is a residually discrete local ring”,
i.e., if ∀x, (x ∈ R× or ∀y (1 + xy) ∈ R×). If a constructive proof is obtained in this particular case,
the process can be completed by “dynamically evaluating an arbitrary ring R as a residually discrete
local ring”. For example, in this paper, Dedekind rings will behave dynamically as valuation rings.

This paper can be thought as a continuation of [30]. In order to avoid repetition, it is assumed
that the reader has a copy of [30] in hand. The notion of “dynamical Gröbner bases” introduced
in [30] for principal rings is extended to Dedekind rings with zero divisors. It is worth pointing
out that dynamical Gröbner bases represent a new alternative for computation with multivariate
polynomials over Noetherian rings. Contrary to the methods that have been proposed, which suggest
that for Noetherian rings the analog of Gröbner bases over fields should be computed, (see for example
[1, 4, 21, 23, 29]), a dynamical substitute is proposed. Instead of a Gröbner basis describing the
situation globally, use a finite number of Gröbner bases, not over the base ring, but over comaximal
localizations of this ring. At each localization, the computation behaves as if a valuation ring were
present. In a word, it is somewhat like Serre’s method in “Corps locaux” [27] but follows the lazy
fashion of computer algebra [2, 8, 10, 12, 13, 30, 31, 32]. Borrowing words from [23], the difference
between our approach and classical approaches is well illustrated by the following example: a Gröbner
basis of the ideal 〈2X1, 3X2〉 in Z[X1, X2] is {2X1, 3X2} according to Trinks [29], {2X1, 3X2, X1X2}
according to Buchberger [4], and {(Z[12 , X1, X2], {X1, 3X2}), (Z[13 , X1, X2], {2X1, X2})} for us.

An essential property of a Dedekind domain is that its integral closure in a finite algebraic exten-
sion of its quotient field remains a Dedekind domain. This property is difficult to capture from an
algorithmic point of view if one requires complete prime factorization of ideals (see [20]). Besides, even
if such factorization is possible in theory, one rapidly encounters impracticable methods that involve
huge complexities such as factorizing the discriminant. In [5], Buchmann and Lenstra proposed to
compute inside rings of integers without using a Z-basis. An important algorithmic fact is that it is
always easier to obtain partial factorization for a family of natural integers, i.e., a decomposition of
each of these integers into a product of factors picked in a family of pairwise coprime integers (see
[3, 2]). This is the strategy adopted when computing dynamical Gröbner bases. The use of dynamical
Gröbner bases provides a way to overcome such difficulties.

Another feature of the use of dynamical Gröbner bases is that it enables one to easily resolve the
delicate problem caused by the appearance of zero divisors as leading coefficients (see [6]). Cai and
Kapur concluded their paper [6] by mentioning the open question of how to generalize Buchbergers’s
algorithm for Boolean rings (see also [16], in which Boolean rings are used to model prepositional
calculus). As a typical example of a problematical situation, Cai and Kapur used the case where the
base ring is A = (Z/2Z)[a, b] with a2 = a and b2 = b. In that case, the method they proposed does
not work due to the fact that an annihilator of ab+a+ b+1 ∈ A can be either a or b; thus, there may
exist non-comparable multi-annihilators for an element in A. Dynamical Gröbner bases allow one to
fairly overcome this difficulty. As a matter of fact, in this specific case, a computation of a dynamical
Gröbner base made up of three Gröbner bases on localizations of A will be conducted. For x ∈ A,
denoting Ax := A[ 1

x ], this can be represented by the following binary tree:
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A
↙ ↘

Ab A1+b

↙↘
A(1+b) a A(1+b)(1+a)

Of course, at each leaf of the tree above, the problem Cai and Kapur pointed disappears completely.
Thus, by systematizing the dynamical construction above, it is directly shown that dynamical Gröbner
bases could be a satisfactory solution to this open problem.

It is true that all the examples given in this paper are over Z/nZ or over rings of integers having
a Z-basis and that such problems can be treated directly in most software systems such as MAGMA [19]
and SINGULAR [28] without using a dynamical approach. Dynamical Gröbner bases are potentially
more appropriate for dealing with Dedekind rings, which are intractable to this type of computer
algebra software. However, the computations are restricted to small, simple examples because all of
the work must be done by hand. For lack of an implementation of dynamical Gröbner bases, a practical
comparison with other methods is impossible. A serious analysis of improvements to the dynamical
method proposed is therefore outside the scope of this paper. No doubt, almost all the improvements
that have been made in cases where the base ring is a field will prove to be easily adaptable to the
dynamical context. Our goal is simply to introduce the main lines of the computation of dynamical
Gröbner bases over Dedekind rings, with the hope that in the future dynamical Gröbner bases will
be implemented in one of the available computer algebra systems. Of course, in such cases, one must
take into account the considerable number of optimizations that have been made in recent years for
the purpose of speeding up Buchberger’s algorithm in cases where the base ring is a field (the faster
version was given in [14]). The interested reader can refer to [15] for a modern introduction to this
subject.

The computation of syzygies (that is, relations between the generators of a module) and the
submodule membership problem are central to homological algebra and represent the two principal
tools required for the resolution of linear systems over rings. The first is used for testing particular
solutions and the second for solving the homogeneous associated system. These two major problems
have been chosen to illustrate our dynamical computation with multivariate polynomials over Dedekind
rings. The resolution of a finitely-generated module is nothing but the computation of iterated syzygies
of its presentation matrix. It is worth mentioning that in the examples given in this paper are restricted
to the computation of the first syzygy because the computation is done by hand, as explained above.
The method used for the computation of syzygies over multivariate polynomials with coefficients in a
field@ is not the optimal one. As a matter of fact, the algorithms implemented in computer algebra
systems that compute such syzygies (SINGULAR for example) are largely inspired by Schreyer’s original
proof [25, 26]. Moreover, by performing reductions between the generators, one can obtain a more
balanced presentation of the syzygy module. Here, it is emphasized that the classical approach can
be adapted to the dynamical setting; thorough optimization of the approach remains to be done.

Another important issue raised in the present work is the “Gröbner Ring Conjecture ” [30] stating
that a valuation ring is Gröbner if and only if its Krull dimension is ≤ 1. Recall that according to [30]
a ring R is said to be Gröbner if for each n ∈ N and each finitely-generated ideal I of R[X1, . . . , Xn],
fixing a monomial order on R[X1, . . . , Xn], the ideal {LT(f), f ∈ I} of R[X1, . . . , Xn] formed by the
leading terms of the elements of I is finitely-generated. It is proven that a Gröbner valuation ring
must have Krull dimension ≤ 1, giving a partial positive answer to this conjecture.

All rings considered are unitary and commutative. The undefined terminology is standard, as in
[9] and [20].

1 Dynamical Gröbner bases over Dedekind rings

Constructive definitions of arithmetical rings and Dedekind rings are needed.



4 Dynamical Gröbner bases over Dedekind rings

Definition 1 (Constructive definition of arithmetical rings and Dedekind rings [11])

(i) S is said to be a multiplicative subset of a ring R if

S ⊆ R, 1 ∈ S and ∀x, y ∈ S, xy ∈ S.

For x1, . . . , xr ∈ R, M(x1, . . . , xr) will denote the multiplicative subset of R generated by
x1, . . . , xr, that is,

M(x1, . . . , xr) = {xn1
1 · · ·xnr

r , ni ∈ N}.

Such a multiplicative subset is said to be finitely-generated. If S is a multiplicative subset of a
ring R, the localization of R at S is the ring S−1R = {x

s , x ∈ R, s ∈ S} in which the elements
of S are forced into being invertible. Note that we do not suppose that 0 /∈ S and thus the ring
S−1R may be trivial (1 = 0). Trivial rings are too important to be disregarded [24, 31]

If x ∈ R, the localization of R at the multiplicative subset M(x) will be denoted by Rx. More-
over, by induction, for each x1, . . . , xk ∈ R, it is defined that Rx1.x2.....xk

:= (Rx1.x2.....xk−1
)xk

.

If S1, . . . , Sk are multiplicative subsets of R, we say that S1, . . . , Sk are comaximal if

∀s1 ∈ S1, . . . , sn ∈ Sn, ∃ a1, . . . , an ∈ R |
n∑

i=1

aisi = 1.

(ii) A ring R (not necessarily integral) is said to be arithmetical if, for any x1, x2 ∈ R, there exist
u, v, w ∈ R such that: {

ux2 = vx1

wx2 = (1− u)x1.

Thus, x1 divides x2 in the ring Ru, x2 divides x1 in the ring R1−u, and the multiplicative subsets
M(u) and M(1 − u) are obviously comaximal. This is not surprising, because we know that
if we localize an arithmetical ring at a prime ideal, we find a valuation ring. An arithmetical
domain is called a Prüfer domain.

(iii) A ring R is said to be a Dedekind ring if it is arithmetical, strongly discrete (we have an algorithm
for the ideal membership problem) and Noetherian (any ascending chain of finitely generated
ideals pauses).

1.1 How to construct a dynamical Gröbner basis over a Dedekind ring ?

Let R be a Dedekind ring, I = 〈f1, . . . , fs〉 a nonzero finitely-generated ideal of R[X1, . . . , Xn], and fix
a monomial order > on R[X1, . . . , Xn] (throughout this paper by monomial order we mean a global
ordering [15]). The purpose is to construct a dynamical Gröbner basis G for I.

Dynamical version of Buchberger’s Algorithm

This algorithm is analogous to the dynamical version of Buchberger’s Algorithm over principal rings
given in [30]. The details of this analogy are described herein. For Noetherian valuation rings, the
algorithm works similarly to Buchberger’s Algorithm. The only difference occurs when it must handle
two incomparable (under division) elements a, b in R. In this situation, one should first compute
u, v, w ∈ R such that

{
ub = va
wb = (1− u)a.

Now, one opens two branches: the computations are pursued in Ru and R1+uR := {x
y , x ∈ R and ∃ z ∈

R | y = 1+zu}. At each new branch, if S = S(f, g)
G′ 6= 0 where G′ is the current Gröbner basis, then
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S must be added to G′. This algorithm must terminate after a finite number of steps. Indeed, if it
does not terminate, this is due to the coefficient and not to the monomials because Nn is well ordered
(see Dickson’s Lemma [9], page 69). That is, the dynamical version of Buchberger’s Algorithm would
produce infinitely many polynomials gi with the same multidegree, such that 〈LC(g1)〉 ⊂ 〈LC(g2)〉 ⊂
〈LC(g2)〉 ⊂ · · ·; this is in contradiction to the fact that a Dedekind ring is Noetherian.

Note that contrary to [30], we use the localization R1+uR instead of R1−u in order to avoid redundan-
cies. To see this, let us take as an example R = Z and u = 4. In the ring Z1+4Z, all the integers that
are coprime to 4 become units (for instance 15 ∈ Z×1+4Z), while in the ring Z3, only the ±3k (k ∈ Z)
become units (15 /∈ Z×3 ).

• Dynamical division algorithm (the dynamical analogue of the division algorithm in the case of a
Noetherian valuation ring): suppose that one is required to divide a term aXα = LT(f) by another
term bXβ = LT(g) with Xβ divides Xα (note that this is only possible when Xβ divides Xα and b
divides a, as in the classical approach).

In the ring R1+uR: f = w
1−u

Xα

Xβ g + r ( mdeg(r) < mdeg(f)) and the division is pursued with f
replaced by r.

In the ring Ru: LT, (f) is not divisible by LT(g) and thus f = f
{g}.

• Dynamical computation of the S-pairs: suppose that one wishes to compute S(f, g) with LT(f) =
aXα and LT(g) = bXβ. Denote γ = (γ1, . . . , γn), with γi = max(αi, βi) for each i.

In the ring R1+uR: S(f, g) = Xγ

Xα f − w
1−u

Xγ

Xβ g.

In the ring Ru: S(f, g) = v
u

Xγ

Xα f − Xγ

Xβ g.

2 The ideal membership problem over Dedekind rings

Definition 2 Let R be a ring, f, g ∈ R[X1, . . . , Xn]\{0}, I = 〈f1, . . . , fs〉 a nonzero, finitely-generated
ideal of R[X1, . . . , Xn], and > a monomial order on R[X1, . . . , Xn].

1) For g1, . . . , gt ∈ R[X1, . . . , Xn], G = {g1, . . . , gt} is said to be a special Gröbner basis for I if
I = 〈g1, . . . , gt〉, the set {LC(g1), . . . ,LC(gt)} is totally ordered under division and for each i 6= j,
S(gi, gj)

G
= 0.

Note that when R is a field, this definition coincides with the classical definition of Gröbner
bases [9, 15]. Also, where R is a valuation ring, we retrieve the definition given in [30].

2) A set G = {(S1, G1), . . . , (Sk, Gk)} is said to be a dynamical Gröbner basis for I if
S1, . . . , Sk are finitely-generated comaximal multiplicative subsets of R and in each localiza-
tion (S−1

i R)[X1, . . . , Xn], Gi is a special Gröbner basis for 〈f1, . . . , fs〉.

The following proposition is similar to Proposition 12 of [30].

Proposition 3 Let R be a Dedekind ring, I = 〈f1 . . . , fs〉 be a nonzero finitely-generated ideal
of R[X1, . . . , Xn], f ∈ R[X1, . . . , Xn] and fix a monomial order on R[X1, . . . , Xn]. Suppose that
G = {g1, . . . , gt} is a special Gröbner basis for I in R[X1, . . . , Xn]. Then, f ∈ I if and only if f

G = 0.

Proof Of course, if f
G = 0, then f ∈ 〈g1, . . . , gt〉 = I. For the converse, suppose that f ∈ I and that

the remainder r of f on division by G in R[X1, . . . , Xn] is nonzero. This means that LT(r) is not
divisible by any of LT(g1), . . . ,LT(gt).
Observe that G is also a Gröbner basis for 〈f1, . . . , fs〉 in Rp[X1, . . . , Xn] for each prime ideal p of R.
Let p be any prime ideal of R. Because G is also a Gröbner basis for 〈f1, . . . , fs〉 in Rp[X1, . . . , Xn],
LM(r) is divisible by at least one of LM(g1), . . . ,LM(gt), but for each gi such that LM(gi) di-
vides LM(r), LC(gi) does not divide LM(r). Let gi1 , . . . , gik be such polynomials and suppose that
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LC(gi1)/LC(gi2)/ · · · /LC(gik) (we can make this hypothesis by definition of a special Gröbner basis).
Because the base ring is a Dedekind ring, we can write 〈LC(gi1)〉 = pα1

1 · · · pα`
` and 〈LC(r)〉 = p

β1
1 · · · pβ`

` ,
where the pi are distinct prime ideals of R, and αi, βi ∈ N. Necessarily, there exists 1 ≤ i0 ≤ ` such
that αi0 > βi0 . But this would imply that the problem persists in the ring Rpi0

[X1, . . . , Xn], in
contradiction to the fact that G is a Gröbner basis for 〈f1, . . . , fs〉 in Rpi0

[X1, . . . , Xn]. 2

Theorem 4 (Dynamical gluing) Let R be a Dedekind ring, I = 〈f1, . . . , fs〉 be a nonzero finitely
generated ideal of R[X1, . . . , Xn], f ∈ R[X1, . . . , Xn] and fix a monomial order on R[X1, . . . , Xn].
Suppose that G = {(S1, G1), . . . , (Sk, Gk)} is a dynamical Gröbner basis for I in R[X1, . . . , Xn]. Then,
f ∈ I if and only if f

Gi = 0 in (S−1
i R)[X1, . . . , Xn] for each 1 ≤ i ≤ k.

Proof The proof is identical to the proof of Theorem 13 in [30]. 2

3 Application to the Syzygy module

3.1 Syzygy modules over valuation rings

The following theorem gives a generating set for syzygies of monomials with coefficients in a valuation
ring. It is a generalization of Proposition 8 ([9], page 104) to valuation rings.

Theorem 5 (Syzygy-generating set of monomials over valuation rings)
Let V be a valuation ring, c1, . . . , cs ∈ V \ {0}, and M1, . . . , Ms be monomials in V[X1, . . . , Xn].
Denoting LCM(Mi, Mj) by Mi,j, the syzygy module Syz(c1M1, . . . , csMs) is generated by:

{Sij ∈ V[X1, . . . , Xn]s | 1 ≤ i < j ≤ s},
where

Sij =

{
Mi,j

Mi
ei − ci

cj

Mi,j

Mj
ej if cj | ci

cj

ci

Mi,j

Mi
ei − Mi,j

Mj
ej else.

Here, (e1, . . . , es) is the canonical basis of V[X1, . . . , Xn]s×1.

Proof One has only to slightly modify the original proof in case V is a field [9].
2

Notation 6 Let V be a valuation ring, > a monomial order, f1, . . . , fs ∈ V[X1, . . . , Xn] \ {0}, and
{g1, . . . , gt} a Gröbner basis for 〈f1, . . . , fs〉. Let ci = LC(gi), and Mi = LM(gi). In order to determine
the syzygy module Syz(f1, . . . , fs), we will first compute Syz(g1, ..., gt). Recall that for each 1 ≤ i <
j ≤ t, the S-polynomial of gi and gj is given by:

S(gi, gj) =

{
Mij

Mi
gi − ci

cj

Mij

Mj
gj if cj | ci

cj

ci

Mij

Mi
gi − Mij

Mj
gj else.

For some hijk ∈ V[X1, ..., Xn], we have

S(gi, gj) =
t∑

k=1

gkhijk with mdeg(S(gi, gj)) = max1≤k≤tmdeg(gkhijk) (?).

(The polynomials hijk are given by the division algorithm.)
Let:

εij =

{
Mij

Mi
ei − ci

cj

Mij

Mj
ej if cj | ci

cj

ci

Mij

Mi
ei − Mij

Mj
ej else.

And

sij = εij −
t∑

k=1

ekhijk.
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Theorem 7 (Syzygy module of a Gröbner basis over a valuation ring) With the previous notations,

Syz(g1, . . . , gt) = 〈sij | 1 ≤ i < j ≤ t〉.

Proof One has only to slightly modify the original proof in case V is a field [9].
2

Denoting by F = [f1 · · · fs] and G = [g1 · · · gt], there exist two matrices, S and T , respectively
of size t× s and s× t such that F = GS and G = FT . We can first compute a generating set
{s1, . . . , sr} for Syz(G). For each i ∈ {1, . . . , r}, we have 0 = Gsi = (FT )si = F (Tsi); therefore,
〈Tsi | i ∈ {1, . . . , r}〉 ⊆ Syz(F ). Also, denoting by Is the identity matrix of size s× s, we have

F (Is − TS) = F − FTS = F −GS = F − F = 0.

This equality shows that the columns r1, . . . , rs of Is − TS are also in Syz(F ). The converse holds, as
stated by the following theorem, the proof of which is identical to that in the case in which the base
ring is a field [9].

Theorem 8 (Syzygy computation over valuation rings: general case) With the previous notations, we
have

Syz(f1, . . . , fs) = 〈Ts1, . . . , T sr, r1, . . . , rs〉.

Example 9 Let f1 = 2XY, f2 = 3Y 3+3, f3 = X2−3X ∈ V[X, Y ] = (Z/4Z)[X, Y ], and F = [f1 f2 f3].
Computing a Gröbner basis for 〈f1, f2, f3〉 using the lexicographic order with X > Y as monomial
order, we obtain:

S(f1, f2) = Y 2f1 − 2Xf2 = 2X =: f4,

S(f1, f3) = Xf1 − 2Y f3 = 2XY
f1−→ 0,

S(f2, f3) = X2f2 − 3Y 3f3 = 3X2 + XY 3 f3−→ X + XY 3 f2−→ 0,

f1
f4−→ 0, S(f2, f4) = 2Xf2 − Y 3f4 = 2X

f4−→ 0,

S(f3, f4) = 2f3 −Xf4 = 2X
f4−→ 0.

Thus, {f2, f3, f4} is a Gröbner basis for 〈f1, f2, f3〉 in V[X,Y ]. Denoting by G = [f2 f3 f4], we have

G = FT with T =




0 0 Y 2

1 0 −2X
0 1 0


 and F = GS with S =




0 1 0
0 0 1
Y 0 0


 .

Computing sij = εij −
∑t

k=1 ekhijk for all i < j, we obtain:

s12 = (X2 − 3X,−3Y 3 − 3, 0), s13 = (2X, 0,−Y 3 − 1), s23 = (0, 2,−X − 1).

And so

Ts12 =




0
X2 − 3X
−3Y 3 − 3


 , T s13 =




−Y 5 − Y 2

4X + 2XY 3

0


 , T s23 =



−XY 2 − Y 2

2X2 + 2X
2


 .

Moreover, we have I3 − TS =




1− Y 3 0 0
2XY 0 0

0 0 0


. So, denoting the first column of I3 − TS by r1, we

have:
Syz(F ) = 〈Ts12, T s13, T s23, r1〉

= 〈 t(−XY 2 − Y 2, 2X2 + 2X, 2), t(−Y 5 − Y 2, 4X + 2XY 3, 0), t(0, X2 − 3X,−3Y 3 − 3), t(1− Y 3, 2XY, 0)〉.
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3.2 Computing dynamically a generating set for syzygies of polynomials over
Dedekind rings

Let R be a Dedekind ring and consider f1, . . . , fs ∈ R[X1, . . . , Xn] \ {0}. Our goal is to com-
pute a generating set for Syz(f1, . . . , fs). We must first compute a dynamical Gröbner basis G =
{(S1, G1), ..., (Sk, Gk)} for the ideal 〈f1, . . . , fs〉 of R[X1, . . . , Xn]. Denoting by Hj = {hj,1, ..., hj,pj}
a generating set for Syz(f1, . . . , fs) over (S−1

j R)[X1, . . . , Xn], 1 ≤ j ≤ k, for each 1 ≤ i ≤ pj , there
exists dj,i ∈ Sj such that dj,ihj,i ∈ R[X1, . . . , Xn]. Under these hypotheses, we have:

Theorem 10 (Syzygies over Dedekind rings) As an R[X1, . . . , Xn]-module,

Syz(f1, . . . , fs) = 〈d1,1h1,1, . . . , d1,p1h1,p1 , . . . , dk,1hk,1, . . . , dk,pk
hk,pk

〉.

Proof It is clear that 〈d1,1h1,1, . . . , d1,p1h1,p1 , . . . , dk,1hk,1, . . . , dk,pk
hk,pk

〉 ⊆ Syz(f1, . . . , fs). For the
converse, let h ∈ Syz(f1, . . . , fs) over R[X1, . . . , Xn]. It is also a syzygy for (f1, . . . , fs) over
(S−1

j R)[X1, . . . , Xn] for each 1 ≤ j ≤ k. Hence, for some dj ∈ Sj , djh ∈ 〈dj,1hj,1, . . . , dj,pjhj,pj 〉
over R[X1, . . . , Xn]. On the other hand, as S1, . . . , Sk are comaximal multiplicative subsets of R,
there exist α1, . . . , αk ∈ R such that

∑k
j=1 αjdj = 1. From the fact that h =

∑k
j=1 αjdjh, we infer

that h ∈ 〈d1,1h1,1, . . . , d1,p1h1,p1 , . . . , dk,1hk,1, . . . , dk,pk
hk,pk

〉 over R[X1, . . . , Xn]. 2

A dynamical method for computing the syzygy module for polynomials over a Dedekind
ring

Let R be a Dedekind ring and consider f1, . . . , fs ∈ R[X1, . . . , Xn] \ {0}. Our goal is to describe a
dynamical method of computing a generating set for Syz(f1, . . . , fs). This method works in the same
way as the case in which the base ring is a Noetherian valuation ring (Paragraph 3.1). Here we add
the Noetherian hypothesis so that the dynamical version of Buchberger’s algorithm terminates. The
only difference occurs when one has to handle two incomparable (under division) elements a, b in R.
In that situation, one should first compute u, v, w ∈ R such that

{
ub = va
wb = (1− u)a.

Now, one opens two branches: the computations are pursued in Ru and R1+uR.

4 An example

Let I = 〈f1 = 3XY + 1, f2 = (4 + 2θ)Y + 9〉 in R := Z[θ][X,Y ] where θ =
√−5.

Let us fix the lexicographic order with X > Y as monomial order.

a) Computing a dynamical Gröbner basis

We will first compute a dynamical Gröbner basis for I in Z[θ][X, Y ]. The details of the computations
will be given for one leaf only. Because x1 := 3 and x2 := 4 + 2θ are not comparable, we have to find
u, v, w ∈ Z[θ] such that: {

ux2 = vx1

wx2 = (1− u)x1.

A solution of this system is given by: u = 5 + 2θ, v = 6θ, w = −3. Then we can open two branches:

Z[θ]
↙ ↘

Z[θ]4+2θ Z[θ]5+2θ

In Z[θ]5+2θ:

S(f1, f2) = 6θ
5+2θf1 −Xf2 = −9X + 6θ

5+2θ =: f3,
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S(f1, f3) = −3f1 − Y f3 = − 6θ
5+2θY − 3 =: f4,

S(f1, f4) = − 2θ
5+2θf1 −Xf4 = 3X − 2θ

5+2θ =: f5,

f2
f4−→ 0, f3

f5−→ 0,
S(f1, f5) = f1 − Y f5 = 2θ

5+2θY + 1 =: f6,

f4
f6−→ 0, S(f2, f5) = Xf2 − 6θ

5+2θY f5
f5,f6−→ 0.

Because 2 and 3 are not comparable under division in Z[θ]5+2θ, we open two new branches:

Z[θ]5+2θ

↙ ↘
Z[θ](5+2θ).3 Z[θ](5+2θ).2

In Z[θ](5+2θ).3:

S(f1, f6) = 2θ
3(5+2θ)f1 −Xf6 = −1

3f5
f5−→ 0,

S(f5, f6) = 2θ
3(5+2θ)Y f5 −Xf6 = 20

3(5+2θ)2
Y −X

f5−→ 20
3(5+2θ)2

Y − 2θ
3(5+2θ)

f6−→ 0.

Thus, G1 = {3XY +1, 3X− 2θ
5+2θ , 2θ

5+2θY +1} is a special Gröbner basis for 〈3XY +1, (4+2θ)Y +9〉
in M(5 + 2θ, 3)−1Z[θ] = Z[θ](5+2θ).3.

In Z[θ](5+2θ).2:

G2 = {3XY + 1, 3X − 2θ
5+2θ , 2θ

5+2θY + 1} is a special Gröbner basis for 〈3XY + 1, (4 + 2θ)Y + 9〉.
In Z[θ](4+2θ):

G3 = {3XY + 1, (4 + 2θ)Y + 9, −27
4+2θX + 1} is a special Gröbner basis for 〈3XY + 1, (4 + 2θ)Y + 9〉.

Finally, in Z[θ]: The dynamical evaluation of the problem of constructing a Gröbner basis for I pro-
duces the following evaluation tree:

Z[θ]
↙ ↘

Z[θ]4+2θ Z[θ]5+2θ

↙↘
Z[θ](5+2θ).3 Z[θ](5+2θ).2

The obtained dynamical Gröbner basis of I is

G = {(R[
1

5 + 2θ
], G1), (R[

1
4 + 2θ

], G3)}.

b) Computing the syzygy module

Denoting by F = [f1 f2], we will compute a generating set for Syz(F ).

In Z[θ](5+2θ).3:

Denoting by G = [g1 g2 g3] with g1 = 3XY + 1, g2 = 3X − 2θ
5+2θ , g3 = 2θ

5+2θY + 1,

we have G = FT with T =
(

1 3X − 2θ
5+2θ + 6θ

5+2θXY −3XY + 2θ
5+2θY − 6θ

5+2θXY 2 + 1
0 −X2Y X2Y 2

)
, and

F = GS with S =




1 0
0 0
0 9


. I2 − TS =

(
0 27XY − 9− (4 + 2θ)Y + 3(4 + 2θ)XY 2

0 1− 9X2Y 2

)
,

r1 =
(

27XY − 9− (4 + 2θ)Y + 3(4 + 2θ)XY 2

1− 9X2Y 2

)
∈ Syz(F ),
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s12 = t(1,−Y,−1), s13 = t( 2θ
3(5+2θ) ,

1
3 ,−X), s23 = t(0, 2θ

3(5+2θ)Y + 1
3 ,−X + 2θ

3(5+2θ)),

T s12=
(

0
0

)
, Ts13=

(
3X2Y + 4+2θ

3 X2Y 2

−1
3 X2Y −X3Y 2

)
, and Ts23 = Ts13. Thus, over Z[θ](5+2θ).3[X, Y ],

Syz(F ) = 〈
(

3X2Y + 4+2θ
3 X2Y 2

−1
3 X2Y −X3Y 2

)
,

(
27XY − 9− (4 + 2θ)Y + 3(4 + 2θ)XY 2

1− 9X2Y 2

)
〉.

In Z[θ](5+2θ).2:

Syz(F ) = 〈
(

9X2Y (5+2θ+2θY )
2θ

−(5+2θ)(3X3Y 2+X2Y )
2θ

)
,

(
27XY − 9− (4 + 2θ)Y + 3(4 + 2θ)XY 2

1− 9X2Y 2

)
〉.

In Z[θ](4+2θ):

Syz(F ) = 〈
( − 9

4+2θ − Y
1

4+2θ + 3XY
4+2θ

)
〉.

Finally, in Z[θ]: Over Z[θ][X, Y ], we have

Syz(F ) = 〈
( −(4 + 2θ)Y − 9

3XY + 1

)
,

(
27XY − 9− (4 + 2θ)Y + 3(4 + 2θ)XY 2

1− 9X2Y 2

)
〉 = 〈

( −(4 + 2θ)Y − 9
3XY + 1

)
〉.

c) The ideal membership problem Suppose that we must deal with the ideal membership problem:

f = (4θ − 1)X2Y + 6θXY 2 + 9θX2 + 3X − 4Y − 9 ∈ ? I = 〈f1 = 3XY + 1, f2 = (4 + 2θ)Y + 9〉
in Z[θ][X, Y ] where θ =

√−5.

Let us first execute the dynamical division algorithm of f by G1 = {f1 = 3XY + 1, f5 = −3X +
2θ

5+2θ , f6 = 2θ
5+2θY + 1} in the ring Z[θ](5+2θ).3[X,Y ].

With the same notations as in [9], one obtains:

q1 q5 q6 p
4θ−1

3 X 0 0 6θXY 2 + 9θX2 + 10−4θ
3 X − 4Y − 9

4θ−1
3 X + 2θY 0 0 9θX2 + 10−4θ

3 X − (4 + 2θ)Y − 9
4θ−1

3 X + 2θY −3θX 0 −(4 + 2θ)Y − 9
4θ−1

3 X + 2θY −3θX −9 0

Thus, the answer to this ideal membership problem in the ring Z[θ](5+2θ).3[X,Y ] is positive and one
obtains:

f = (4θ−1
3 X + 2θY )f1 − 3θXf5 − 9f6.

But since

f5 = ( −6θ
5+2θXY − 3X + 2θ

5+2θ )f1 −X2Y f2, and
f6 = ( −6θ

5+2θXY 2 − 3XY + 2θ
5+2θY + 1)f1 −X2Y 2f2, one infers that

f = [
−90

5 + 2θ
X2Y + 9θX2 +

54θ

5 + 2θ
XY 2 + 27XY +

6θ + 15
5 + 2θ

X − 4Y − 9]f1 + [3θX3Y + 9X2Y 2]f2.

Seeing that 3 does not appear in the denominators of the relation above, we can say that we have a
positive answer to our ideal membership problem in the ring Z[θ]5+2θ[X,Y ] without dealing with the
leaf Z[θ](5+2θ).2. Clearing the denominators, we obtain:
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(5+2θ)f = [−90X2Y +45(θ−2)X2 +54θXY 2 +27(5+2θ)XY +(6θ+15)X−4(5+2θ)Y −9(5+2θ)]f1

+[15(θ − 2)X3Y + 9(5 + 2θ)X2Y 2]f2. (A)

It remains to execute the dynamical division algorithm of f by G2 = {f1 = 3XY +1, f7 = − 27
4+2θX +

1, f8 = Y + 9
4+2θ} in the ring Z[θ]4+2θ[X, Y ]. The division is as follows:

q1 q7 q8 p

0 0 (4θ − 1)X2 6θXY 2 − 81
4+2θX2 + 3X − 4Y − 9

2θY 0 (4θ − 1)X2 −81
4+2θX2 + 3X − (4 + 2θ)Y − 9

2θY 3X (4θ − 1)X2 −(4 + 2θ)Y − 9
2θY 3X (4θ − 1)X2 − (4 + 2θ) 0

Thus, the answer to this ideal membership problem in the ring Z[θ]4+2θ[X, Y ] is positive and one
obtains:

f = 2θY f1 + 3Xf7 + ((4θ − 1)X2 − (4 + 2θ))f8.

But since

f7 = f1 − 3
4+2θXf2, and

f8 = (Y + 9
4+2θ )f1 − 3

4+2θXY f2, one infers that

(4 + 2θ)f = [(14θ − 44)X2Y + 9(4θ − 1)X2 − 4(4 + 2θ)Y + 3(4 + 2θ)X − 9(4 + 2θ)]f1

+[−9X2 − 3(4θ − 1)X3Y + 3(4 + 2θ)XY ]f2. (B)

Using the Bezout identity (5 + 2θ)− (4 + 2θ) = 1, (A)− (B) ⇒

f = [(46− 14θ)X2Y + 9(θ − 9)X2 + 54θXY 2 + 27(5 + 2θ)XY + 3X − 4Y − 9]f1

+[3(9θ − 11)X3Y + 9(5 + 2θ)X2Y 2 + 9X2 − 3(4 + 2θ)X]f2,

a complete positive answer.

5 The Gröbner Ring Conjecture

Recall that accordingly to [30], a ring R is said to be Gröbner if for each n ∈ N and each finitely-
generated ideal I of R[X1, . . . , Xn], fixing a monomial order on R[X1, . . . , Xn], the ideal {LT(f), f ∈ I}
of R[X1, . . . , Xn] formed by the leading terms of the elements of I is finitely-generated. The first
example of a ring that is not Gröbner was given in [30]. This example corresponds to a valuation
domain V whose valuation group is Z × Z equipped with the lexicographic order (dimV = 2). The
author of [30] was unable to prove that this works for any valuation domain whose Krull dimension is
≥ 2. We propose hereafter to establish this fact in the general setting, giving a partial positive answer
to the conjecture given in [30] to which, for convenience, we will refer as the Gröbner Ring Conjecture.

The Gröbner Ring Conjecture: A valuation ring is Gröbner if and only if its Krull dimension is
≤ 1.

Recall that a ring R has Krull dimension ≤ 1 if and only if

∀a, b ∈ R, ∃n ∈ N, ∃x, y ∈ R | an(bn(1 + xb) + ya) = 0. (1)

This is a constructive substitute for the classical abstract definition (see [7, 17, 18]). For a valuation
domain, it is easy to see that (1) amounts to the fact that the valuation group is archimedean.
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Theorem 11 For an integral valuation ring V, we have (i) ⇒ (ii) ⇒ (iii) where:

(i) V is a Gröbner ring.

(ii) For any m ∈ N, if J is a finitely-generated ideal of V[X1, . . . , Xm] then J ∩ V is a principal
ideal V.

(iii) dimV ≤ 1.

Proof “(i) ⇒ (ii)” Let J be a finitely-generated ideal of V[X1, . . . , Xm]. Because V is a Gröbner ring,
〈LT(J)〉 is finitely-generated, say 〈LT(J)〉 = 〈h1, . . . , hs〉 where h1, . . . , hs are terms. We can suppose
that h1 ∈ V and h2, . . . , hs /∈ V. By virtue of Lemma 3 of [30], we infer that J ∩V = 〈h1〉.
“(ii) ⇒ (iii)” Let us denote by v and G respectively the valuation and the valuation group associated
with V and consider a, b ∈ Rad(V) (the Jacobson radical of V). Our goal is to find n ∈ N such that
v(b) ≤ n v(a), or equivalently, such that b divides an.
Let us denote by I the ideal of V[X] generated by g1 = aX+1 and g2 = b. Because I finitely-generated
I ∩V is principal, write I ∩V = 〈c〉. Because c ∈ I, it can be written in the form

c = U(X).(aX + 1) + V (X).b,

with U(X), V (X) ∈ V[X]. Supposing that deg V ≤ k and evaluating X at −1
a , we obtain that

c = V (−1
a )b and thus b divides c ak. This means that v(b) ≤ v(c ak), or equivalently, v(c) ≥ v( b

ak ).

It is worth pointing out that for any m ∈ N, if am divides b then b
am ∈ I as S(g1, g2) = ( b

a)g1−Xg2 =
b
a =: g3 ∈ I, . . . , gm+1 := b

am−1 ∈ I, gm+2 := b
am = b

am (aX + 1)−Xgm+1 ∈ I.

If ak does not divide b, we are done by taking n = k; otherwise v(c) = v( b
ak ) because c/ b

ak and
necessarily I ∩V = {x ∈ V | v(x) ≥ v( b

ak )}. Thus b
ak+1 /∈ I, b divides ak+1, and we are done by

taking n = k + 1.
2

Corollary 12 If a Prüfer domain is Gröbner, then its Krull dimension is ≤ 1.
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23–46.
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