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Introduction

The purpose of this note is to present a possible constructive version of Krull’s principal
ideal theorem. This theorem is qualified by Kaplansky [4] as being “probably the most
important single theorem in the theory of Noetherian rings”. Historically, it corresponds
to one of the high point in the development of abstract algebra.

One motivation for analysing this proof is the following. It is known [5], in a non
constructive way, that if we have a theorem classically valid of the form

φ1, . . . , φn ` φ

where φ1, . . . , φn, φ are geometric formulae then this theorem is also valid intuitionistically.
Furthermore the work in [2] indicates a method for transforming a given classical argument
of such a statement into an intuitionistic one. This seems to be related crucially to the
fact that geometrical statements are invariant under change of base.

Krull’s principal ideal theorem is a good example of a classical proof of a statement of
the form

R Noetherian , φ1, . . . , φn ` φ

where φ1, . . . , φn, φ are geometric formulae. The proof we present may indicate a general
method for transforming a classical proof of such a statement in an intuitionistic argument.
The key seems to be that it is possible to find an intuitionistic definition of “Noetherian”,
classically equivalent to the usual definition, which is invariant under change of base. We
present such an invariant definition, which is enough to state and prove Krull’s principal
ideal theorem constructively.

1. Krull’s Principal Ideal Theorem

We analyse the following version of the Principal Ideal Theorem. We write 〈u〉 the
principal ideal generated by an element u of a ring, and 〈u1, . . . , un〉 the ideal generated
by a finite sequence u1, . . . , un.

Theorem 1.1. If R is a Noetherian local ring, of maximal ideal M , and M is minimal
among primes of R containing x ∈ M then for any f ∈ M there exists n and k such that
xkfn ∈ 〈fn+1〉 .

We introduce the following notation. Let In be the ideal

In = {u ∈ A | (∃k) xku ∈ 〈fn〉}

Notice that the ideals In form a descending chain I0 ⊇ I1 ⊇ . . . and that the theorem
states that there exists n such that fn ∈ In+1. Since we have clearly fn ∈ In+1 iff
In = In+1, the theorem states that there exists n such that In = In+1.
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Proof. The fact that M is minimal over 〈x〉 can be expressed by that if u ∈ M there exists
k such that uk ∈ 〈x〉 . Since R is Noetherian, M is finitely generated and hence we can
find p such that Mp ⊆ 〈x〉 .

We claim that for any k it is possible to find N such that for any sequence of decreasing
ideals J0 ⊃ J1 ⊇ . . . and any sequence u0 ∈ J0, . . . , uN−1 ∈ JN−1 there exists i < N such
that ui ∈ Ji+1 + Mk.

Indeed, for k = 1 we can take N = 2 because either u1 ∈ M or u1 is invertible and
hence we can find R such that u0 = au1 and then u0 ∈ J1.

Suppose that we have found N for k and take any sequence of length ≥ L = NK

u0 ∈ J0, . . . , uL−1 ∈ JL−1

where K is such that any sequence of elements in Mk/Mk+1 of length ≥ K is not inde-
pendent, seeing Mk/Mk+1 as a vector space over the field R/M. If we assume M to be
generated by q elements we can take K = 1+ qk. By induction hypothesis, we can extract
a subsequence un0 , . . . , unK−1

uni
∈ Jni+1 + Mk. Write uni

= vi + mi. By choice of K we
have a relation of the form

mi − Σj>iαjmj ∈ Mk+1

and it follows from this that uni
∈ Jni+1 + Mk+1 as desired.

Since Mp ⊆ 〈x〉 it follows from this result that we can find N such that for any sequence

u0 ∈ I0, . . . , uN−1 ∈ IN−1

there exists n < N such that un ∈ 〈x〉+ In+1. Notice next that if

u = ax + v u ∈ In v ∈ In+1

then we have k such that

xku ∈ 〈fn〉 xkv ∈
〈
fn+1

〉
and then axk+1 ∈ 〈fn〉 so that a ∈ In.

We can then define N infinite sequences ui(k) ∈ Ii, i < N starting from ui(0) = f i ∈ Ii

such that ui(k + 1) = ui(k) for all i < N except one j for which we have

uj(k) = xuj(k + 1) (mod Ij+1)

By the box principle, we find in this way n < N and an infinite sequence fn = v0, v1, . . .
of elements in In such that

vl = xvl+1 (mod In+1)

Since R is Noetherian we have eventually vl ∈ 〈v0, . . . , vl−1〉 and then, since x ∈ M we
get vl = 0 (mod In+1) and hence fn = v0 = 0 (mod In+1) as desired. �

This proof is essentially the original one of Krull, as presented for instance in [3]. The
differences with the proof in [3] are as follow:

• In [3] one introduces Q1 ⊆ Q ⊆ M with f ∈ Q−Q1, x ∈ M −Q and the ideals

Q(n) = {u ∈ R | (∃s /∈ Q) su ∈ Qn}

In our presentation, u ∈ Q is replaced by its approximation u ∈ 〈f〉 while s /∈ Q
is replaced by s ∈ {xk | k ≥ 0}. In this way, Q(n) becomes the ideal

In = {u ∈ R | (∃k) xku ∈ 〈fn〉}.
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• In [3] using Jordan-Holder’s theorem, one notices that for any decreasing sequence
of ideals J0 ⊇ J1 ⊇ . . . the corresponding sequence J0 + Mk ⊇ J1 + Mk ⊇ . . . is
stationnary. We have replaced this step by a more explicit step, essentially in order
to facilitate the connection with the next constructive proof of Krull’s principal
ideal theorem.

2. Constructive Proof, First Version

From now on, we work constructively.
Given a ring R we let G(a0, . . . , an−1) to mean that there exists i < n such that

ai ∈ (a0, . . . , ai−1). If a0, . . . , an−1 is the empty sequence G() is the absurd proposition
⊥. We define now intuitionistically R to be Noetherian iff for any predicate P on finite
sequences such that

(1) G(σ) → P (σ)
(2) P (σ) → P (σa)
(3) ((∀a) P (σa)) → P (σ)

P holds on all sequences. Notice that, by the second clause, this is the same as saying
that P holds on the empty sequence (). Let us call a predicate that satisfies the clause
1., 2., 3. to be hereditary.

The importance of this definition of Noetherian is that it is invariant by change of base.
We shall comment on this in the next section. It is possible to show with this definition
that if R is noetherian then so is R[X] without coherence conditions.

We shall need the following lemma.

Lemma 2.1. If R is Noetherian and P (σ0, . . . , σm−1) is a property of m finite sequences
of elements of R such that

(1) G(σi) → P (σ0, . . . , σm−1)
(2) P (σ0, . . . , σm−1) → P (σ0, . . . , σia, . . . , σm−1)
(3) [(∀a) P (σ0a, . . . , σm−1) ∧ · · · ∧ (∀a) P (σ0, . . . , σm−1a)] → P (σ0, . . . , σm−1)

then P holds for all m finite sequences.

Proof. We do the argument for m = 2. We have by assumption

(1) G(σi) → P (σ0, σ1)
(2) P (σ0, σ1) → P (σ0, σ1a) and P (σ0, σ1) → P (σ0a, σ1)
(3) [(∀a) P (σ0a, σ1) ∧ (∀a) P (σ0, σ1a)] → P (σ0, σ1)

We consider the property Q(σ) = (∀σ1) P (σ, σ1) We claim that this property is hereditary.
This follows from the fact that if we assume (∀a) Q(σa) then the property R(σ1) = P (σ, σ1)
is hereditary. Hence Q and P hold universally. �

Let R be a ring, and M an ideal such that any element in R either is in M or is
invertible. We assume x ∈ M such that for any u ∈ M there exists k such that uk ∈ 〈x〉.
We assume furthermore that R is Noetherian.

Theorem 2.2. Let f ∈ M and define In to be the ideal

In = {u ∈ A | (∃k) xku ∈ 〈fn〉}
The predicate

H(σ) = G(σ) ∨ [(∃n) fn ∈ In+1]

is hereditary.

Since R is Noetherian, this implies that H() holds and hence fn ∈ In+1 for some n.
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Proof. We assume

(∀a) H(a0, . . . , an−1, a)

and we prove C = H(a0, . . . , an−1). Notice that we have

G(a0, . . . , an−1, a) = a ∈ (a0, . . . , an−1) ∨G(a0, . . . , an−1)

and hence we can rewrite the hypothesis as

(∀a) [C ∨ a ∈ 〈a0, . . . , an−1〉]
We follow now the proof of theorem 1.1. We don’t know that M is finitely generated, but
we can do “as if” M is generated by a0, . . . , an−1 that are given explicitly. We compute
hence p such that

(∀u ∈ Mp) [C ∨ u ∈ 〈x〉]
Similarly, we find explicitly N such that for any decreasing sequence of ideals Jk, k < N
and any sequence uk ∈ Jk, k < N we have

C ∨ (∃k < N) [uk ∈ Jk+1 + Mp]

We introduce now the following predicate Qk(u1, . . . , up) meaning that we have

fk = xu1 (mod Ik+1), . . . , up−1 = xup (mod Ik+1)

We define Qk() to be the true proposition T . Following the proof of theorem 1.1 we see
that we have

[∧k<NQk(σk)] → C ∨ (∃i < N) (∃a) Qi(σa)

We can now use lemma 2.1 with the predicate

P (σ0, . . . , σN−1) = [∧k<NQk(σk)] → C

and we conclude that P holds on all N sequences. In particular if we apply P on the
empty sequences we get that C holds, as desired. �

Let us outline the algorithm implicit in this argument, first in the case where R is
strongly discrete, that is where we can decide the membership of an element a to a given
finitely generated ideal 〈a0, . . . , an−1〉. In such a case the predicate G is decidable. The
steps in the algorithm will then be indexed by a finite sequence a0, . . . , an−1 of elements
in M satisfying the negation of G. For this sequence, either we can follow the proof of
theorem 1.1 and compute m such that fm ∈ Im+1 or we find explicitly a ∈ M such that a
is not in 〈a0, . . . , an−1〉. We start then a new step of the algorithm with the new sequence
a0, . . . , an−1, a. This stops eventually because R is Noetherian and a sequence avoiding G
cannot grow indefinitely.

Essentially the same algorithm goes on in the general case, but now we cannot decide
u ∈ 〈a0, . . . , an−1〉 any more. When such a question is raised, we proceed as if a was not
in 〈a0, . . . , an−1〉. If later we discover an explicit relation a ∈ 〈a0, . . . , an−1〉 we backtrack
at this stage and proceed according with this new information.

Of course, this is only an informal description. The proof above, being constructive,
can itself be seen as an algorithm (with its own justification of termination).

However, this constructive formulation of Krull’s principal ideal theorem is not optimal.
For one thing, membership to M is assumed to be decidable, and one would like to have
a version without this assumption. Another point is that it seems hard to derive the
general version of the principal ideal theorem from this unary version. We shall present
a better constructive version of Krull’s principal ideal theorem. In the next section, we
recall some results of [1], presented in a form suitable for formulating this refined version.
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3. Spectrum as Theory and Constructive Krull Dimension

To any ring R we can associate its space of prime ideals Sp(R) known as the spectrum
of R, with two different topologies. The first one if the Zariski topology where the basic
open subsets are of the form

D(a) = {P ∈ Sp(R) | a /∈ P}
The second one is the constructible topology where the basic open subsets are generated
by D(a), a ∈ R and

V (a) = {P ∈ Sp(R) | a ∈ P}
so that a basic open subset in general is of the form

D(a) ∩ V (b1) ∩ · · · ∩ V (bn)

Both topologies are spectral: all basic open subsets are compact. Furthermore, the con-
structible topology is Hausdorff.

It is possible to have a constructive description of both topologies, as a point-free space
(or locale), with Zariski or with the constructible topology. The Zariski topology can be
elegantly described as the following theory for a generic prime ideal P

• ` 1 /∈ P
• 0 /∈ P `
• a + b /∈ P ` a /∈ P, b /∈ P
• ab /∈ P ` a /∈ P
• a /∈ P, b /∈ P ` ab /∈ P

The fact that this theory is finitary corresponds to the fact that Zariski topology is
spectral. It is also related to the fact that the dynamical proofs considered in [2] are
finitely branching trees.

It can be shown [1] that we have

a1 /∈ P, . . . , an /∈ P ` b1 /∈ P, . . . , bm /∈ P

iff the ideal generated by the bj meets the multiplicative monoid generated by the ai.
Classically, both descriptions are equivalent: we have

a /∈ P `
∨

ai /∈ P

iff a belongs to the radical of the ideal generated by the ai iff

D(a) ⊆
⋃

D(ai)

in the space Sp(R). Constructively, we think of the basic open subset D(a) = a /∈ R as
an atomic proposition, syntactically given, and not as a set of points.

In order to get constructible topology we add a new predicate a ∈ P with the axioms

• ` a /∈ P, a ∈ P
• a /∈ P, a ∈ P `

Derivations are again finitely branching trees.
The theory of chains P0 ⊇ · · · ⊇ Pn is the theory

• ` 1 /∈ Pi

• 0 /∈ Pi `
• a + b /∈ Pi ` a /∈ Pi, b /∈ Pi

• ab /∈ Pi ` a /∈ Pi

• a /∈ Pi, b /∈ Pi ` ab /∈ Pi

• a /∈ Pi+1 ` a /∈ Pi
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In this setting, we can now formulate one of the main result of [1] as follows.

Theorem 3.1. The Krull dimension of R is ≤ n− 1 iff we have for any a1, . . . , an

a1 /∈ P1, . . . , an /∈ Pn ` a1 /∈ P0, . . . , an /∈ Pn−1

in the theory of chains P0 ⊇ · · · ⊇ Pn iff for any a1, . . . , an there exists b1, . . . , bn and
p1, . . . , pn such that

ap1

1 (ap2

2 · · · (apn
n (1 + bnan) + · · ·+ b2a2) + b1a1) = 0

We notice that this constructive approach of the spectrum is really in the spirit of
Hilbert’s program: we replace the semantical description of the spectrum as a set of
points (models) by a syntactical notion of theory. The fact that the Krull dimension of a
ring is ≤ n− 1 is then expressed as a derivability statement in a theory.

So far, all the theories we have considered were finitary. In order to describe construc-
tively minimal prime ideals, we shall need to allow possibly infinitary disjunction, and the
derivations will be well- founded, but not necessarily finite, trees.

4. Constructive Proof, Second Version

We now give a description of the formal space mSp(R) of minimal prime ideals for the
Zariski topology. The basic open subsets are still of the form a /∈ M but we add the new
axioms, which are no longer finitary

` a /∈ M,
∨

anu=0

u /∈ M

Let us describe more in details this topology. The basic open subsets p, q, r, . . . are of the
form

p = D(a) = {M ∈ mSp(R) | a /∈ M}
We have then

p ∩D(b) = D(ab)

To such an element p we associate the multiplicative monoid µ(p) generated by a. fait
We can then define formal inclusion between these basic open subsets

p ≤ D(b)

iff the principal ideal 〈b〉 meets µ(p). It can be noticed that we can describe inductively
when a basic open subset p is covered by a family of basic open subsets pi, i ∈ I, that is
we give a direct inductive definition of

p `
∨

pi

This happens iff

• p ≤ pi for some i or
• for some b1, . . . , bm such that 〈b1, . . . , bm〉 meets the monoid µ(p) we have

p ∩D(bj) `
∨

pi

for all j or
• for some a ∈ R we have

p ∩D(a) `
∨

pi and p, u /∈ M `
∨

pi

for all u, n such that uan = 0
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If we fix an element x of R we introduce the space mSpx(R) of minimal primes over x,
which could be defined as mSp(R/(x)). We simply change the infinitary clause by

` a /∈ M,
∨

u(an−bx)=0

u /∈ M

We can now state a constructive version of Krull’s principal ideal theorem

Theorem 4.1. If R is noetherian then in the theory of a minimal prime M over x we
have, for any f ∈ R

` f /∈ M,
∨

ufn(xk−af)=0

u /∈ M

that is the collection of basic open subsets D(f) and D(u), ufn(xk − af) = 0, form a
covering of the space mSpx(R).

Notice that this theorem is stronger than the previous one theorem 2.2. We don’t
assume given any minimal prime ideal over x, but we say that the conclusion

f /∈ M ∨
∨

ufn(xk−af)=0

u /∈ M

is provable in the theory of minimal prime ideal over x. Another difference is that we
do not assume M to be decidable, but M is here described only by the theory of its
complement.

Actually, it is quite direct to show that we have conservativity of assuming M decidable
in the following sense.

Lemma 4.2. The entailment

p, b1 ∈ M, . . . , bm ∈ M `
∨

pi

is provable in the theory mSpx(R) extended with P

` a /∈ M, a ∈ M a /∈ M, a ∈ M `
iff

p ` b1 /∈ M, . . . , bm /∈ M,
∨

pi

is provable in the theory mSpx(R).

So the collection of basic open subsets

D(f), D(u), ufn(xk − af) = 0

covers mSpx(R) for the Zariski topology iff it covers it for the constructible topology.
The proof can then be given by following the proof of theorem 2.2, but working now with

predicates that have as values the opens of the space X = mSpx(R). Let P : R → O(X)
be such a predicate, we then have, for any a ∈ R

P hereditary → P (a)

simply because, for any basic open p of X such that

p ` P hereditary

the predicate p ` P (x), that is the predicate that expresses that P (x) contains the basic
open p, is hereditary. Hence since R is Noetherian, we have p ` P (a) for all a ∈ R1.

1This argument can be interpreted as saying that R is Noetherian in the sheaf model over X, and
shows that the notion of being Noetherian is invariant under change of bases.
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The following is a direct consequence of theorem 4.1, which expresses that if M is
minimal over x there cannot be a proper chain of two prime ideals inside M .

Corollary 4.3. In the theory of chains M ⊇ Q0 ⊇ Q1, with M minimal over x we have,
if R is Noetherian, for any a0, a1 ∈ R

a0 /∈ Q0, a1 /∈ Q1 ` a0 /∈ M, a1 /∈ Q0

In this form, the theorem generalises to give inductively the final version of the Principal
Ideal Theorem.

Theorem 4.4. If R is a Noetherian ring, and x1, . . . , xn ∈ R, then in the theory of chains
M ⊇ Q0 ⊇ · · · ⊇ Qn with M minimal over 〈x1, . . . , xn〉, for any a0, . . . , an ∈ R we have

a0 /∈ Q0, . . . , an /∈ Qn ` a0 /∈ M, a1 /∈ Q0, . . . , an /∈ Qn−1

Corollary 4.5. Let R be a noetherian local ring. Let us denote by x /∈ M the predicate
“x is invertible”. Let x1, . . . , xn ∈ Rad(R) = {y : (∀z ∈ R) 1 + yz /∈ M}. Assume that
we have

∀a ∈ R (a /∈ M ∨ (∃m ∈ N) (∃a1, . . . , an ∈ R) am = a1x1 + · · ·+ anxn) .

Then the Krull dimension of R is ≤ n with the constructive meaning given in [1] (see
theorem 3.1.
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