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A first important result in dimension theory is the fact that the Krull dimension of the ring
K[X1, . . . , X`] is equal to ` when K is a field. In the literature this result is always obtained af-
ter some preliminary efforts that seem excessive for settling such an intuitive fact. For example, many
authors rely on the principal ideal theorem of Krull, whose proof is very tricky. Matsumura [6,chap.2]
gives a rather direct proof, but his Theorem 5.6 settling the result needs Theorems 5.1 to 5.5 together
with three pages of rather subtle arguments, including Hilbert’s Nullstellensatz. The shortest proof
we are aware of appears in [3]. The goal of this note is to give a short, direct proof of this fact, based
on an elementary elementwise characterization of Krull dimension (Corollary 2).

Let R be a nontrivial commutative ring. Recall that the Krull dimension of R is the maximal
length ` of a chain p0 ⊂ p1 ⊂ · · · ⊂ p` of prime ideals inside R. By convention, a ring R has Krull
dimension −1 if and only if it is trivial (i.e., 1R = 0R). Since the notion of Krull dimension is very
important in commutative algebra (see, for example, part II of Eisenbud [3]), it is useful to give a
purely elementary characterization of Krull dimension, without invoking prime ideals.

We define the boundary R{x} of x in R as the localized ring S{x}
−1R, where

S{x} = xN(1 + xR) = {z ∈ R | ∃n ∈ N,∃a ∈ R, z = xn(1 + ax)} .

Note that R{x} is trivial if x is invertible or nilpotent; passing from R to the boundary R{x} is
an efficient way to discard invertible and nilpotent elements. This is similar to the consideration
of the boundary of a subvariety W in a variety V : the boundary is empty whenever W is empty
(corresponding to the equation 1 = 0—i.e., x = 0, with x invertible) or “full” (corresponding to the
equation 0 = 0—i.e., x = 0, with x nilpotent).

More precisely we get the following theorem (see [2]):

Theorem 1 Let R be a commutative ring, and let ` be a nonnegative integer. The following statements
are equivalent:

1 The Krull dimension of R is at most `.
2 For each x in R the Krull dimension of R{x} is at most ` − 1.

Proof. First recall that a prime ideal of a localization S−1R has the form S−1p, where p is a prime
ideal of R not intersecting S. We make two claims:
(a) For each x in R, every maximal ideal m of R intersects S{x}. Indeed, if x belongs to m, this is
obvious; otherwise x is invertible modulo m which implies that 1 + xR intersects m.
(b) If m is a maximal ideal of R and x belongs to m \ p, where p is a prime ideal contained in m,
then p ∩ S{x} = ∅. Namely, if xk(1 + xy) ∈ p, then since x /∈ p we get 1 + xy ∈ p ⊂ m, so 1 ∈ m,
contradicting the maximality of m.

Now the equivalence is easy. Claim (a) shows that any chain of primes ending with a maximal
ideal in R is shortened when passing to R{x}, while it follows from claim (b) that a chain of maximal
length ` is shortened to ` − 1 if x is properly chosen. 2

Starting from dimension −1, Theorem 1 gives an elementary inductive characterization of Krull
dimension. This can be made more explicit through the following corollary (see [1],[5]):
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Corollary 2 Let ` be a nonnegative integer. The Krull dimension of R is at most ` if and only if for
any given x0, . . . , x` in R there exist a0, . . . , a` in R and m0, . . . ,m` in N such that

xm0
0 (· · · (xm`

` (1 + a`x`) + · · ·) + a0x0) = 0. (1)

Proof. For ` = 0, this is a exactly Theorem 1. Assume that the equivalence has been established for
all integers less than ` and all R. We deduce that the dimension of a localization S−1R is smaller than
` if and only if for all x0, . . . , x`−1 in R there exist a0, . . . , a`−1 in R, s in S, and m0, . . . ,m`−1 in N
such that

xm0
0 (xm1

1 · · · (xm`−1

`−1 (s + a`−1x`−1) + · · · + a1x1) + a0x0) = 0 . (2)

Observe that s replaces 1 in the similar equality (1) for R rather than S−1R. It remains only to
replace s with an arbitrary element in S{x`} (i.e., with an element xm`

` (1 + a`x`)). 2

We emphasize the fact that the characterization given in Corollary 2 does not use the set of prime
ideals.

Corollary 3 Let K be a field, and let R be a commutative K-algebra. If any sequence x0, . . . , x` in
R is algebraically dependent over K, then the Krull dimension of R is at most `.

Proof. Let Q(x0, . . . , x`) = 0 be an algebraic dependence relation over K. Order the nonzero mono-
mials αp0,...,p`

xp0
0 xp1

1 · · ·xp`
` of Q using the lexicographic ordering on the “words” p0 p1 . . . p`. We may

suppose that the coefficient of the first monomial is 1 and that xm0
0 xm1

1 · · ·xm`
` is the monomial in

question. Following the lexicographic ordering, we see that Q can be written in the form

Q = xm0
0 · · ·xm`

` + xm0
0 · · ·x1+m`

` R` + xm0
0 · · ·x1+m`−1

`−1 R`−1 + · · · + xm0
0 x1+m1

1 R1 + x1+m0
0 R0,

where Rj belongs to K[xk ; k ≥ j]. We can then invoke Corollary 2. 2

Corollary 4 If K is a field, then the Krull dimension of the ring K[X1, . . . , X`] is `.

Proof. Clearly the dimension is at least `, for we have the following chain of prime ideals

{0} ⊂ 〈X1〉 ⊂ 〈X1, X2〉 ⊂ · · · ⊂ 〈X1, . . . , X`〉 .

To prove that the dimension of K[X1, . . . , X`] is not greater than ` it is enough in view of Corollary
3 to show that any ` + 1 elements in K[X1, . . . , X`] are algebraically dependent over K. This is a
standard and elementary result (see, for instance, [4, chap. 10, Theorem 1]).

ACKNOWLEDGMENTS. Thanks to Peter Schuster, Claude Quitté, Marie-Françoise Roy, and
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