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Joint work

This talk is based on joint works with T. Coquand, M.E. Alonso, M. Coste, G. Dı́az-Toca,
C. Quitté, M.-F. Roy and I. Yengui
Survey papers with a logical flavour
Coquand T., L. H. A logical approach to abstract algebra. (survey) Math. Struct. in
Comput. Science 16 (2006), 885–900.
Coste M., L. H., Roy M.-F. Dynamical method in algebra : Effective Nullstel-
lensätze. A.P.A.L., 111, (2001) 203–256.
L. H. Algèbre dynamique, espaces topologiques sans points et programme de
Hilbert. A.P.A.L., 137 (2006), 256–290.
A book to appear (an english version in preparation)
L. H. and Quitté C. Algèbre Commutative, méthodes constructives.
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Hilbert’s programme

Classical mathematics are expected to work within set theory à la ZFC.
Nevertheless, the intuition behind ZFC is not at all correctly translated in a theory ad-
mitting countable models. And the presence of oddities as Banach-Tarski’s Theorem is
counterintuitive.
There is a lack of clear semantics for this (very abstract) theory. Moreover the Hilbert’s
programme, which was settled in order to secure Cantor set theory, has failed in its original
form, asking finitary proofs of consistance.
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Hilbert’s programme

This is in strong constrast with the facts that many concrete results obtained by suspicious
arguments inside ZFC become completely secured after further work (see references the-
reafter) and that no contradiction has appeared in this theory after a century of practical
use.
Bishop E. Foundations of Constructive Analysis. McGraw Hill, 1967
Mines R., Richman F., Ruitenburg W. A Course in Constructive Algebra. Universitext,
Springer-Verlag, (1988).
Martin-Löf P. The Hilbert-Brouwer controversy resolved ?
One hundred years of intuitionism (1907-2007), (Cerisy), (Mark Van Atten & al., editors)
Publications des Archives Henri Poincaré, Birkhaüser Basel, 2008, pp. 243–256.
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Hilbert’s programme

Mathematicians and logicians who do not think that ZFC has a clear content aim to solve
the mystery of its fairly good concrete behaviour.
A possible issue is to develop a systematic way of finding constructive semantics, not for
all classical objects, but at least for classical proofs giving “concrete” results.
Since we are not confident with the semantics of ZFC, and since we think that there is
no miracle in mathematics, we have to explain why a large class of classical results are
TRUE.
Here, we deal with a precise semantics of TRUE : something for which we have a construc-
tive proof.
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Hilbert’s programme. An historical success

Gödel’s incompleteness theorem kills Hilbert’s programme in its original, finitistic, form.
But this does not kill Hilbert’s programme in its constructive form.
Theorem (Dragalin-Friedman)
In Peano, a statement of the form

∀m, ∃n, f(m, n) = 0

where f is primitive recursive, if provable with classical logic, is also provable with intui-
tionnistic logic.
Certainly this is far from proving consistency of ZFC, but this is a great success.
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Hilbert’s programme. Logical limitations

Since THERE EXISTS and OR do not have the same meaning in classical and constructive
logic, some unavoidable limits appear in our “constructive Hilbert’s programme”.
First example. We can find a primitive recursive function f : N3 → N such that the
statement

∀m, ∃n, ∀p, f(m, n, p) = 0

is provable with classical logic, and unprovable with intuitionnistic logic.
The logical structure of this statement is too high : ∀ ∃ ∀ . . . . . .
Classical and constructive semantics conflict here with the meaning of TRUE for such a
statement.
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Hilbert’s programme. Logical limitations

Second example. (Basic example in algebra)
If K is a field, every polynomial f(X) ∈ K[X] of degree ≥ 1 has an irreducible factor.
The logical structure of this statement is

∀f, ∃g ,∀h . . . . . . . . .
This is too much !
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Hilbert’s programme. Logical limitations

We can easily construct a counterexample to the above statement in a mathematical world
with only Turing-computable objects.
E.g., a recursive countable field for which it is impossible fo find g from f as a result of a
recursive computation, even when restricted to deg(f) = 2.
Even if we don’t want to work in such a restricted mathematical world, the counterexample
shows that there is no hope to get a constructive proof of the statement.
From a constructive point of view, the statement is not exactly true, but its proof using
TEM is interesting.
The proof says us how to use constructively the statement when it appears in a classical
proof as an intermediate “idealistic” result which is used in order to prove a more concrete
one.
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Hilbert’s programme. Logical limitations

A partial solution
This leads to a new, interesting, relevant semantics for “the splitting field of a polynomial”.
The classical “static” splitting field (whose “construction” uses TEM) is replaced by a
dynamic object, implementable on a computer.
This dynamic object offers a constructive semantics for the splitting field of a polynomial,
and for the algebraic closure of a field.
D5 : Della Dora J., Dicrescenzo C., Duval D.
About a new method for computing in algebraic number fields. In Caviness B.F.
(Ed.) EUROCAL ’85. L.N.C.S. 204, 289–290.
D́ıaz-Toca G., L. H.
Dynamic Galois Theory. J. Symb. Comp. 45, (2010) 1316–1329.
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Hilbert’s programme. A partial solution

We use a general, rather informal, recipe, in order to extract a computational content of
classical proofs when they lead to concrete results.
The general idea is : use only formalizations with low logical complexity (e.g., only axioms
in the form ∀ ∃ . . . ).
Replace logic, TEM and Choice by dynamical computations, i.e., lazzy and branching
computations, as in D5.
In practice, this works for pieces of abstract algebra that can be formalized in “geometric
theories”.
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Geometric first order theories
Dynamical computations

Example 1. Discrete fields
(A, • = 0, +,−,×, 0, 1)

Commutative rings
Computational machinery of commutative rings, plus three very simple axioms :

` 0 = 0, x = 0 ` xy = 0, x = 0, y = 0 ` x + y = 0.

A : generators and relations for a commutative ring
NB : a = b is an abreviation for a−b = 0, and usual axioms for equality and ring-structure
are consequence of the computational machinery inside Z[x, y, z].
Axiom of discrete fields (a geometric axiom)
• ` x = 0 ∨ ∃y xy = 1
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Geometric first order theories, dynamical computations, example 1

Using the geometric axiom as a dynamical computation
An example : prove the dynamical rule : • x2 = 0 ` x = 0.
Open two branches.

In the first one, x = 0.
In the second one, add a parameter y and the equation 1− xy = 0,

deduce x2y = 0 (commutative ring),
deduce x(1− xy) = 0 (commutative ring).
deduce x(1− xy) + x2y = 0 (commutative ring).
the computational machinery tells us LHS equals x,

i.e., it reduces x− LHS to 0
You have got x = 0 at the two leaves.
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Geometric first order theories, dynamical computations

Cut elimination
A first order theory is said to be geometric when all axioms are “geometric first order
axioms” :

• A(x) ` ∃y B(x, y) ∨ ∃z C(x, z) ∨ . . .
where A, B, C are conjunctions of predicates over terms.
These axioms can be viewed as deduction rules and used, without logic, as computational
rules inside “proof trees” : what we call a dynamical computation (or dynamical proof)
Theorem For a first order geometric theory, in order to prove facts or geometric rules,
TFAE
1. First order theory with classical logic
2. First order theory with constructive logic
3. Dynamical computations
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Geometric first order theories, cut elimination

Orevkov V. P. On Glivenko sequent classes. In Logical and logico-mathematical calculi [11],
pages 131–154 (Russian), 147–173 (English). Trudy Matematicheskogo Instituta imeni
V.A. Steklova, (1968). English translation, The calculi of symbolic logic. I, Proceedings
of the Steklov Institute of Mathematics, vol. 98 (1971).
Nadathur G. Correspondence between classical, intuitionistic and uniform provability.
Theoretical Computer Science, 232 273–298, (2000).
Coste M., L. H., Roy M.-F. Dynamical method in algebra : Effective Nullstellensätze.
A.P.A.L., 111, (2001) 203–256.
Avigad J. Forcing in Proof Theory. The Bulletin of Symbolic Logic, 10 (2004), pp. 305–333
Schwichtenberg H., Senjak, C. Minimal from classical proofs. To appear : CALCO-Tools
2011.
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Geometric first order theories, dynamical computations, example 1

Theorem 1 TFAE :
1. A proves 1 = 0 (i.e., the ring is trivial) as a commutative ring
2. 1 belongs to the ideal generated by the relations given in A
3. A proves 1 = 0 as a discrete field (first order theory)
3◦. A proves 1 = 0 as a discrete field by dynamical computations
4. A ∪ {z; f(z) = 0} (f monic of degree ≥ 1) proves 1 = 0 as a discrete field (first order
theory)
4◦. A∪{z; f(z) = 0} (f monic of degree ≥ 1) proves 1 = 0 as a discrete field by dynamical
computations
5. A proves 1 = 0 as an algebraically closed discrete field (first order theory)
5◦. A proves 1 = 0 as an algebraically closed discrete field by dynamical computations
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Geometric first order theories, dynamical computations, example 1

Theorem 2 TFAE :
1. A proves a = 0 as a commutative reduced ring
2. A proves a = 0 as a discrete field (first order theory)
2◦. A proves a = 0 as a discrete field by dynamical computations
3. for some N ≥ 0, aN is in the ideal generated by the relations given in A
4. A proves a = 0 as an algebraically closed discrete field (first order theory)
4◦. A proves a = 0 as an algebraically closed discrete field by dynamical computations
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Geometric first order theories, dynamical computations, example 1

Corollary 1 Hilbert’s Nullstellensatz
If g, f1, . . . , fr ∈ K[X1, . . . , Xn], where K ⊆ L algebraically closed, there is a test for “ g
vanishes at the zeroes of f1, . . . , fr in Ln ”.
This test is done by a dynamical computation which either gives gN ∈ 〈f1, . . . , fr〉 for an
N ≥ 0, or computes a point x ∈ Ln such that g(x) ∈ L× and f1(x) = · · · = fr(x) = 0.
Corollary 2 Formal Hilbert’s Nullstellensatz
If g, f1, . . . , fr ∈ Z[X1, . . . , Xn], we have a test for g = 0 being a consequence of f1 =



· · · = fr = 0 in all reduced rings.
This test is done by a dynamical computation which either gives gN ∈ 〈f1, . . . , fr〉 for
an N ≥ 0, or computes a finite field F and a point x ∈ Fn such that g(x) ∈ F× and
f1(x) = · · · = fr(x) = 0.
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Geometric first order theories, dynamical computations

Example 2. Local rings
Axiom of local rings
In words : x + y invertible implies x invertible or y invertible.

• (x + y)z = 1 ` ∃u xu = 1 ∨ ∃v yv = 1
Axioms of residually discrete local rings
In words : every element is invertible or in the Jacobson radical.
We need to introduce two more predicates, Iv(x) for “x invertible”, and Zr(x) for “x is in
the Jacobson radical” (is zero residually).

• x = 0 ` Zr(x)

• Zr(x) ` Zr(xy)

• Zr(x), Zr(y) ` Zr(x + y)

• Zr(x), Iv(y) ` Iv(x + y)

• ` Iv(1)

• Iv(xy) ` Iv(x)

• Iv(x) ` ∃u ux = 1

• ` Iv(x) ∨ Zr(x)

————————————————– page 21 —————————————————–

Geometric first order theories, dynamical computations, example 2

Local-global principle
Theorem Let S : AX = B be a linear system on A.
TFAE :

1. A proves that S has a solution as a commutative ring

2. A proves that S has a solution as a local ring (first order theory)

2◦. A proves that S has a solution as a local ring by dynamical computations

3◦. A proves that S has a solution as a residually discrete local ring by dynamical
computations

In classical mathematics, local rings are always residually discrete and point 2. means
(using Choice) : S has a solution after localization at all prime ideals
In constructive mathematics, the fact that point 3◦. implies point 1. is the basic tool for
deciphering classical proofs that use localization at all prime ideals.
————————————————– page 22 —————————————————–

Geometric first order theories, dynamical computations

Example 3. Spectral spaces
Spectral spaces are very important in abstract algebra. As shown by Stone in 1930, the
category of spectral spaces is (in classical mathematics) equivalent to the opposite category
of distributive lattices.
To a spectral space corresponds the distributive lattice made of compact open subspaces.
This dual lattice gives a constructive semantics for the spectral space. Indeed, a distribu-
tive lattice is a simple algebraic structure (L,∨,∧, 0, 1). But the existence of “points” of
the dual spectral space Spec(L) (i.e., morphisms L→ {0, 1}) need choice and TEM.
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Geometric first order theories, dynamical computations, example 3

The notion of Krull dimension of a spectral space is often important in concrete applica-
tions, so it is useful to understand what is its meaning for the constructive object L. This
was done by Joyal in 1974, and is now given in a very simple formulation.
For example, Kdim(L) ≤ 2 means that for each x0, x1, x2 ∈ L we can find b0, b1, b2 with
the following inequalities
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Geometric first order theories, dynamical computations, example 3

This is much simpler than the usual definition of Krull dimension which needs quantifi-
cation over elements of Spec(L), which is second order.
Nevertheless, in order to use this very simple definition in commutative algebra, we have
to deal with various spectra which are dual to various distributive lattices attached to a
ring, and this needs “geometric logic”, which is more powerful than “geometric first order
theories”.
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Geometric theories. Barr’s Theorem

First order geometric theories are not enough powerful for explaining the success story of
abstract algebra in classical mathematics.
Many basic notions do not fit in the pattern.
For example, to be a reduced ring is first order, but to be nilpotent (for an element of
a ring) is not first order. This needs an existential quantification over N. But N is very
complicated, as Gödel told us.
So it is convenient to replace ∃N ∈ N, aN = 0 by a “more concrete” infinite disjunc-
tion

1 = 0 ∨ a = 0 ∨ a2 = 0 ∨ a3 = 0 ∨ . . .
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Geometric theories

Another example is the notion of Krull dimension of a ring. We need to deal with a
concrete definition of Krull dimension for a commutative ring A. The distributive lattice
Zar(A), dual of the spectral space Spec(A) (the Zariski spectrum) is the lattice of ideals



of the form
√
〈a1, . . . , ar〉 (for all finite sequences in A). So Kdim A ≤ 2 means that for

each x0, x1, x2 ∈ Zar(A) we can find b0, b1, b2 ∈ Zar(A) with the following inequalities
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Geometric theories

So Kdim(A) ≤ r is a geometric notion. In order to work with it, we found an equivalent
more manageable version.
Definition 1 If a ∈ A we call K(a) = aA + (

√
0 : a) the Krull boundary ideal of a : i.e.

K(a) = { ax + y | ya is nilpotent }.
Definition 2
We give the following inductive definition for Kdim A ≤ n :

• Kdim A ≤ −1 means that the ring is trivial (1 = 0),
• for n ≥ 0, Kdim A ≤ n means that for each a ∈ A,

Kdim(A/K(a)) ≤ n− 1.
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Geometric theories

Another typical example (see [Wraith]) of notion expressed geometrically is the notion of
flat module M over a ring A.
It says that if we have a relation PX = 0 where P is a row vector with elements in A
and X a column vector with elements in M then we can find a rectangular matrix Q and
a vector Y such that QY = X and PQ = 0.
In words : linear dependance relations in M can always be explained in A.
Since we don’t say anything about the size of Q and Y , this statement involves implicitely
an infinite disjunction over matrices of arbitrary size. Thus the notion of flat module is
not first-order but geometric.
G. Wraith Intuitionistic algebra : some recent developments in topos theory. Proceedings
of the International Congress of Mathematicians (Helsinki, 1978), pp. 331–337, Acad. Sci.
Fennica, Helsinki, 1980.
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Geometric theories. Barr’s Theorem

As stressed by G. Wraith the importance of geometric formulae comes from Barr’s theo-
rem :
Theorem If a geometric sentence is deducible from a geometric theory in classical logic,
with the axiom of choice, then it is also deducible from it intuitionistically.
Furthermore in this case there is always a proof with a branching tree form, a dynamical
proof. In general, this tree may be infinitely branching.



But Barr’s theorem cannot have a constructive proof. So, it is an experimental work :
“interesting geometric theorems” in commutative algebra can “always” be proven by well
controlled branching trees.
Barr M. Toposes without points. J.P.A.A, 5, 265–280, (1974).
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Geometric theories

Example 1. Serre splitting off and Forster
Theorem 1 (Forster theorem, 1964)
If A is a Nœtherian ring, Kdim A ≤ r and M is a finitely presented module locally
generated by r elements, then it can be generated by n + r elements.
Theorem 2 (Heitmann, 1984 : nonNœtherian Forster theorem and Serre splitting off for
Krull dimension, concrete version)
If Kdim A < n and if F is a rectangular matrix over A such that ∆n(F ) = 1, then there
exists a linear combination of the columns of F which is unimodular.
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Geometric theories. Example 1

Serre splitting off and Forster theorem work also (in classical mathematics) for Nœtherian
rings with the dimension of the maximal spectrum.
In general, the maximal spectrum is not a spectral space.
So, Heitmann suggested a nonNœtherian generalization.
He considered a new spectral space (equal to the maximal spectrum in the Nœtherian
case) with a complicated definition.
It turns out that the corresponding distributive lattice Heit(A) is the set of ideals of the
form

H(a1, . . . , ar) = {x | ∀y, ∃u, 1− (1 + xy)u ∈ 〈a1, . . . , ar〉 }

This makes the definition of Kdim(Heit(A)) ≤ n no more geometric.
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Geometric theories. Example 1

Remark : you can obtain the definition of Kdim(Heit(A)) ≤ n in a geometric form if you
introduce predicates (with suitable axioms) for x ∈ H(a1, . . . , ar).
Heitmann did not succeed to prove Serre splitting off and Forster theorem for
Kdim(Heit(A)).
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Geometric theories. Example 1.

Nevertheless, his approach suggests to use a new notion of dimension, which mimics the
inductive definition of Krull dimension, replacing in the definition

√
0 by the Jacobson

radical. This new dimension (we call it Heitmann dimension) is ≤ Kdim(Heit(A)).
And Serre splitting off and Forster theorem do work for Heitmann dimension.
This gives a new result (even better than the one conjectured by Heitmann) in commu-
tative algebra. This was made possible because the proof for Krull dimension was more
clear and more simple in the constructive setting than in the classical one.
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Geometric theories

Example 2. Dedekind domains
Theorem (using classical matheatics)
Let A be a Nœtherian domain, integrally closed in its fraction field, and with Krull
dimension ≤ 1. Then ideals of A are locally free.
Extracting the constructive content of the proof gives the following
Theorem Let A be a coherent domain, integrally closed in its fraction field, and with Krull
dimension ≤ 1.
Then A is an arithmetical ring : finitely generated ideals are locally principal : for all a, b
you can find s, u, v such that sa = ub and (1− s)b = va.
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Geometric theories

Example 3. Using maximal ideals
Another typical example of notion expressed geometrically is the notion of maximal ideal.
If you try to express the notion as a first order one, what you get is in fact the notion or
prime ideal.
This is related to the fact that in model theory, existential statements are allowed to be
verified by elements outside the initial structure (think to algebraic closure).
A predicate M(x) with the meaning of “x belongs to a (generic) maximal prime of the
ring A” has to verify an infinite disjunction

M(x) ∨
∨
y∈A

M(xy − 1)
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Geometric theories. Example 3

Assume you deal with a classical proof that says : in order to prove that the ring you
have constructed is trivial, take the quotient by an arbitrary maximal prime and find a
contradiction.
You introduce a predicate M(x) for the generic maximal prime and you follow the classical
proof. Each time you have to chose a branch for an element xi, you try the branch M(xi).
At a moment, the classical proof shows “a contradiction”. This means that 〈x1, . . . , xn〉
contains 1. This shows that xn is invertible modulo 〈x1, . . . , xn−1〉, so the infinite disjunc-
tion under xn is satisfied in one branch with an element y you have computed.
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Geometric theories. Example 3

And you can follow the proof.
Yengui have done this job for a crucial Suslin Lemma in the Suslin proof for Quillen-Suslin
theorem.
Yengui I. Making the use of maximal ideals constructive.
Theoretical Computer Science, 392, (2008) 174–178.
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Geometric theories

Examples using minimal prime ideals
Theorem Traverso-Swan
For a reduced ring A, TFAE
1. A is seminormal : if x2 = y3 there exists z, z2 = y and z3 = x.
2. any rank 1 projective module over A[X] is extended from A
3. any rank 1 projective module over A[X, Y ] is extended from A
Theorem Zariski Main Theorem
Let A be a ring with an ideal J and B be a finitely generated algebra A[x1, . . . , xn] such
that B/JB is a finite generated A/J-module, then there exists s ∈ 1 + JB such that
s, sx1, . . . , sxn are integral over A.
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Beyond

So Hilbert’s programme works in practice for many important theorems in abstract com-
mutative algebra.
Mainly when we are able to use geometric theories.
But ...
What about Nœtherianity ?
(definitively outside the scope of geometric theories)
What about coherent rings ?
This notion captures a good part of the constructive content of Nœtherianity, but this is
not a geometric notion.
What about real numbers ?
We need a constructive theory of O-minimal structures.
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Thank you


