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Plan

• – Statement of the theorem for abelian groups

– Generalized form: Principal Ideal Domains

• Case of finitely generated subgroups or modules:

Smith diagonalization.

• Solutions of linear systems. Coherence.

• Case of finite intersections of finitely generated subgroups.

• General case: notheriannity.
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Structure theorem
for finitely generated abelian groups

Theorem 1. (Existence of a good basis, 1).
Let G be a subgroup of (Zn,+).

1. There exist a Z-basis (e1, . . . , en) of Zn, an integer r (0 ≤ r ≤ n),
and positive integers a1, . . . , ar such that:

• ai divides ai+1 (1 ≤ i < r)

• (a1e1, . . . , arer) is a Z-basis of G.

2. The subgroup G̃ = Ze1 ⊕ · · · ⊕ Zer of Zn depends uniquely of G:
it is equal to {x | ∃k > 0, kx ∈ G }.

3. Zn/G ' Zn−r ⊕ G̃/G ' Zn−r ⊕ Z/a1Z ⊕ · · · ⊕ Z/arZ.

4. The list [a1, . . . , ar] is uniquely determined, (G̃ : G) = a1 · · · ar.
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Principal ideal domains

• A is a discrete domain: every element is regular or equal to 0.
Equivalently, ∀x ∈ A Ann(x) = 0 or 〈1〉.

• A is Bezout: each finitely generated ideal is principal.
Equivalently (for a discrete domain) ∀a, b, ∃u, v, s, t, g such that[

u v
s t

]
·
[

a
b

]
=

[
g
0

]
,

∣∣∣∣∣ u v
s t

∣∣∣∣∣ = 1

• A is RS-Noetherian: each ascending chain of finitely generated
ideals has two consecutive terms equal.

Remark : We don’t need an explicit divisibility relation, but without
this condition the last item is a bit disturbing.
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Structure theorem:
finitely generated modules over a PID

Theorem 2. (Existence of a good basis, 2).

Let A be a PID and M a submodule of An.

1. There exist an A-basis (e1, . . . , en) of An, an integer r (0 ≤ r ≤ n),
and regular elements a1, . . . , ar ∈ A such that:

• ai divides ai+1 (1 ≤ i < r)

• (a1e1, . . . , arer) is an A-basis of M .

2. The submodule M̃ = Ae1 ⊕ · · · ⊕Aer of An depends uniquely of
M : it is equal to {x | ∃a ∈ A, a regular, ax ∈ M }.

3. An/M ' An−r ⊕ M̃/M ' An−r ⊕A/a1A ⊕ · · · ⊕A/arA.

4. Either the list [a1A, . . . , arA] is uniquely determined, or A is triv-
ial.

NB: M and M̃ are free.
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Smith diagonalization of matrices

Theorem 3. (Smith reduction over Z)

Let M be a matrix ∈ Zn×m. It admits a Smith reduction:

there exist two invertible matrices C ∈ Zm×m and L ∈ Zn×n such that

the matrix D = LMC is in Smith reduced form, i.e., all entries di,j

where i 6= j are zero, and di,i divides di+1,i+1 (1 ≤ i ≤ min(m, n)−1).

Moreover, taking nonnegative di,i they are uniquely determined by M .

(the product d1,1 · · · dk,k is equal to the gcd of all k×k minors of M).

Theorem 4. (Smith reduction over a PID A)

Let M be a matrix ∈ An×m. It admits a Smith reduction:

there exist two invertible matrices C ∈ Am×m and L ∈ An×n such that

the matrix D = LMC is in Smith reduced form, i.e., all entries di,j

where i 6= j are zero, and di,i divides di+1,i+1 (1 ≤ i ≤ min(m, n)−1).

Moreover, the ideals di,iA are uniquely determined by M . (the prod-

uct d1,1 · · · dk,k is equal to the gcd of all k × k minors of M).
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Consequences of

Smith diagonalization

If A is a PID, the good basis theorem applies for submodules M ⊆ An

which are finitely generated.

Moreover a submodule M ⊆ An which is a finite intersection of

finitely generated submodules is itself finitely generated.

The problem of computing generators for an intersection of finitely

generated submodules of a free module is a basic one. This leads to

the notion of coherent rings.
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Solutions of linear systems, coherence

Definition 5.

1. A ring A is coherent if every linear form An → A has a finitely

generated kernel.

2. An A-module M is coherent if every linear map An → M has a

finitely generated kernel.

3. A ring A is strongly discrete if for every linear form α : An → A

and every x ∈ A, either x ∈ Imα or ((x ∈ Imα) ⇒ 1 =A 0).

4. An A-module M is strongly discrete if for every linear map α :

An → M and every x ∈ M , either x ∈ Imα or ((x ∈ Imα) ⇒ 1 =A 0).

Coherence is what is needed to control homogeneous linear systems.

If you add strong discreteness you control all linear systems.
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Coherence

A ring is coherent if and only if

1. The intersection of two finitely generated ideals is always a finitely

generated ideal.

2. The annihilator of any element x ∈ A, i.e., { y ∈ A | yx = 0 } is a

finitely generated ideal.

An A-module is coherent if and only if

1. The intersection of two finitely generated submodules is always

a finitely generated submodule.

2. The annihilator of any element x ∈ M , i.e., { y ∈ A | yx = 0 } is a

finitely generated ideal.
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From rings to finitely presented modules

Theorem 6.

1. If A is a coherent ring, then so is any finitely presented A-module.

2. If A is a strongly discrete coherent ring, then so is any finitely

presented A-module.
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Noetherianity

The good basis theorem can be seen as:

• Each finitely generated subgroup of Zn admits a good basis.

• Each subgroup of Zn is finitely generated.

In order to understand constructively the second item let us consider
the five following variants for an A-module M .

N1: Each submodule of M is finitely generated.

N2: Each nondecreasing chain of submodules
M1 ⊆ M2 ⊆ · · · ⊆ Mn ⊆ · · ·

is eventually constant.

N3: Each nondecreasing chain of finitely generated submodules is
eventually constant.

N4: In each nondecreasing chain of finitely generated submodules
there are two equal consecutive terms.

N5: A strictly increasing chain of finitely generated submodules is
impossible.
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Coherence and Noetheriannity

In classical mathematics Noetheriannity implies coherence. But strong

“counterexamples” show that this implication has no computationnal

content.

From a computational point of view, coherence is much more usefull

than Noetheriannity.

Nevertheless Noetheriannity is interesting for obtaining proofs of ter-

mination for certain algorithms
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Hilbert Noether Basis Theorem

Here Noetherian means RS-Noetherian.

Proposition 7. If A is a Noetherian coherent ring, then so is any
finitely presented A-module.

Theorem 8. (Hilbert, Noether, Richman, Seidenberg)

1. If A is a Noetherian coherent ring, then so is A[X].

2. If A is a strongly discrete Noetherian coherent ring, then so is
A[X].

Corollary 9.

1. If A is a Noetherian coherent ring, then so is any finitely presented
A-algebra.

2. If A is a strongly discrete Noetherian coherent ring, then so is
any finitely presented A-algebra.
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