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1. Introduction

The classical theory of ordered fields (Artin-Schreier theory) makes
intensive use of non-constructive methods, i particular of the axiom of
choice. However since Tarski (and even since Sturm and Sylvester) one
knows how to compute 1n the real closure of an ordered field K solely by
computations in K. This apparent contradiction is solved in this paper.

We give here a constructive proof of the first results of the theory of
ordered fields, including the existence of the real closure.

The proofs can be interpreted in the particular philosophy of each
reader. In a classical point of view for example, the effective procedures in
the definitions may be interpreted as given by oracles. Hence one gets the
existence of the real closure of an arbitrary ordered field without the axiom
of choice. In a constructive framework “a la Bishop” one gets the existence
of the real closure of a discrete ordered field. The reference for discrete
fields is [MRR]. From the point of view of classical recursive theory the
proofs give uniformly primitive recursive algorithms for Turing machines
with oracles (cf [K1]).

The essential tools needed are the following: a constructive version of
the mean value theorem in an ordered field, the notions of prime cone (see
[BCR]) and of ordered d-closed field.

The use of algorithm IF from [CR] gives a concrete representation for
elements of the real closure, with no need of primitive elements.

Through the paper “A real root calculus” of Zassenhauss ([Za]), we
discovered recently Holkott ’s thesis [Ho]. Holkott’s method and ideas are,
sometimes surprisingly, very similar to ours. Qur paper can be considered
as a modern and, we hope, clearer presentation of Holkott’s results. Thanks
to L. Gonzalez for communicating the reference [Za] and to T. Sander for
translating to us decisive parts of [Ho].

Tomas Sander also studied recently and independently the existence
of the real closure without the axiom of choice ([Sal).
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2. Preliminaries

Ordered fields.

Definition 1: A set 1s discrete when the equality of two elements 1s decid-
able. A discrete field 1s a field K, discrete as a set and in which the laws of
addition, multiplication, opposite and inverse are computable. A discrete
ordered field K 1s a discrete field where the sign of an element 1s decidable.
From now on, all fields and ordered fields considered are assumed to be
discrete.

Remark 1: An ordered field with an oracle giving results of arithmetic op-
erations and sign of elements is a discrete ordered field. A codable ordered
field where elements are represented by a finite data structure and where
arithmetic operations and sign determinations are given by algorithms is a
discrete ordered field.

Let K be an ordered field. An open interval 1s by definition a set
la,b[={r e K|a<x <b}

where a and b are in K or equal to +o00 or —co.

Theorem 1 (constructive mean value theorem). Let K be an ordered field,
a and b two elements of K with a < b.

There exist two families (An i)neN,i=1,2,... n and (rp i)neN,i=12, . n Of
rational numbers in |0, 1] such that, for every polynomial P of K[X] of
degree < n, the following equality holds:

Pla)=Pb)=(a—=b) Y rpiP'(a+ Ayilb—a)).

i=1,...,n

In particular
1} if P’ s positive on an interval, P is increasing on this interval,
2) on every bounded interval the function defined by P is Lipschitz.

Proof: The theorem is an immediate consequence of the following lemma:

Lemma. There exist two families (Ap ;)i=12,.. n and (rp i)i=12, . n of ra-
tional numbers in 10, 1[ such that, for every polynomial P in [X] of degree
< n, the following equality holds:

Pla)=P(b)=(a—=b) Y  7niP'(a+Mnilb—a)).

i=1,...,n

The lemma gives algebraic identities about variables a, b, and the
coeflicients of the polynomial which are valid in any commutative ring which
is a -algebra, and in particular in fields of characteristic zero.
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Let us prove the lemma. Using an affine change of coordinates one
may suppose @ = —1 and b = 1. Let the degree n be fixed. The function
sending P to P(1) — P(—1) is a linear form where the constant coefficient
plays no role. Such linear forms constitue a vector space of dimension n.

For every choice of n different rational numbers (A, ;) , the linear

i=1,...,n
forms sending P to P’(\, ;) are independent in this space. So to this
choice corresponds rational numbers r, ; making the formula true. The
only difficult point is to choose A, ; in ]0, 1] such that the corresponding
rn,; are still in ]0, 1[. Gauss formulas (where one has to consider zeroes of
Legendre polynomials, cf. [L]) correspond to such a choice, but with real
numbers and not rational numbers. A choice of A, ; rational numbers close
enough to the A, ; of (Gauss ensures that the corresponding », ; are still

positive.

Remark 2: Explicit upper and lower bounds for P’ are easy to compute on
a bounded interval, hence a Lipschitz modulus for P.

Definition 2: A sign condition is a member of {> 0,= 0, < 0}. A gener-
alized sign condition is a member of {< 0,< 0,= 0,> 0,> 0}. When a
sign condition < 0 or > 0 1s replaced by the corresponding generalized sign
condition < 0 or > 0, the sign condition 1s said to have been relazed.

A subset of an ordered field is open if 1t 1s a union of open intervals.
A function from K to K is continuous if the inverse image of an open set
1s open.

Lemma. A polynomial function from an ordered field into itself 1s contin-
Uous.

2. Prime cones

Definitions 3 (see [BCR]:
a) A prime cone of a ring A is a subset « such that
1) Ve e A, 2% € a,
2) a+a Ca,
3) a.a C v,
) Vee AVye Ajzy€Ea=>r Eaor —y € a.

b) The support of a, Supp(a) = oM —av, is a prime ideal whose residue
field k(Supp(a)) is ordered: positive or zero elements of k(Supp(«))
are 1mages of elements of «.

c) Let K be an ordered field and A a K-algebra. The prime cone « is
compatible with the order of K if moreover

) anK={ze K|z >0}
The field k(Supp(«)) is then an ordered extension of K. Let L be an
ordered extension of K and f a ring homomorphism of A in L. L 1s an
ordered extension of k(Supp(«)) ifand only if {x € A | f(z) > 01in L} = a.
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d) When £(Supp(«)) is an algebraic extension of K, « is algebraic over
K.

e) Let us denote by aq, a4 and a_ the subsets of A of elements whose
images in k(Supp(a) are 0, +1 and —1. Then oy = Supp(a) and
a=aplUay.

Axioms 1), 2), 3) and 4) can be rewritten as
1’) A is the disjoint union of «g, a4 and a_, and a_ = —ay,
2’a) ag+ a C «a,
2)b) Of_|_ —|— O{_|_ C O{_|_j
3’a) ap.a C ap,
3’b) ay.ay Cay.

f) When A = K[X] one writes X, for the image of X in k(Supp(«a)).

When moreover « is algebraic over K one writes K[ X, ] for the ordered

field % (Supp(a)).
3. d-closed ordered fields
3.1. Definitions.

Definition 4: A field 1s real if —1 1s not a sum of squares.
An ordered field is d-closed (where d > 1) if every polynomial P of
degree < d such that P(a)P(b) < 0 has a root on the interval ]a, b[.

In the classical situation, this definition 1s equivalent to the definition

of d-real closed field in [B].

Remark 3: Every ordered field is real and 1-closed. Every real field is of
characteristic zero.

C'omment: In the classical theory, using Zorn’s lemmait is possible to prove
that any real field can be ordered. This is no longer true from a constructive
point of view. More concretely 1t 1s impossible to prove constructively that
in a real field 1t 1s possible to add a real square root to a or to —a and
get a real extension: 1t would be necessary to assert that a or —a 1s not a
sum of squares. This would clearly imply the “lesser limited principle of
omniscience” (LLPO) which is not constructively valid (cf [MRR], Chapter
1). An example of recursive real field not recursively orderable appears in

[MN].
3.2. Construction of the 2-closure of an ordered field.

Definition 5: An ordered extension R of an ordered field K is an ordered
2-closure of K if 1t 1s a 2-closed ordered field and if every element of R, 1s
obtained starting from elements of K by repetition of arithmetic operations
and extraction of the real square root of a positive element.

The next proposition is training for the proof of the existence of the
real closure that will be proved later along the same lines.
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Proposition 1. Every ordered field K has an ordered 2-closure, unique up
to (unique) K-isomorphism of ordered fields.

Proof: If a is a positive element of K| it 1s easy to see that there exists an
ordered extension K obtained by adding a positive real square root of a:
without taking into consideration the fact that K might or might not have
had such a positive real root, one may give without amhbiguity a sign to each

expression « + y\/a, where @ and y are in K, hence also to every expression
Q)(y/a) where @ € K[X], by considering the remainder of the division of

Q(X) by X? — a; this defines a prime cone of K[X], the corresponding
residue field is denoted by K[\/a].

If L 1s an ordered extension of K in which ¢ has a positive square root
a’, there exists a unique K-isomorphism of ordered fields from K[\/a] to
KJa'] (the subfield of L generated by K and «’).

This implies the following lemma:

Lemma. Let a and b be two positive elements of an ordered field K. The
ordered fields K[/a][vb] and K[Vb][\/a] are isomorphic as ordered exten-
stons of K.

Let us consider now the union of all K[\/a1][\/az] - -[/ai] with a;,
(j =1,...,4) positive in K[\/a1][\/az] --[,/@;—1]. The ordered 2-closure

we look for, will be the quotient of this union by an equivalence relation.
Let us define this equivalence relation. Let

K, = K[Vai][vas] - - [Vai]
with a;(j = 1,... %) positive in K[\/a1][\/az] - --[,/a;_1] and
K> = K[v/bi][Vb2] - [Vbi]
with b;(j = 1,...,4) positive in K[/b1][v/ba] - [\/bj_1]. Let us define

K' = Ky [v/bi][v/bo] - - - [V/bir].

Using several times the lemma one has a unique K-isomorphism from K’

to
K" = Kol y/aillv/azl - - [v/ail.

By definition, elements of K; and K are equivalent if their images in
K’ and K" coincide up to the isomorphism. This defines an equivalence
relation compatible with the ordered field structure: reflexivity and sym-
metry are immediate. Transitivity involves three extensions. The ordered

2-closure is then the quotient of the union of K[, /ai][\/az] - - -[\/a;] (with
aj, (j=1,... 1) positive in K[\/a1][y/az]---[\/a;—1]) by this equivalence

relation.
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3.3. Sign conditions.

Definition 6: Let L = [Py, Ps, ..., Pi] be a list of polynomials of K[X] of
degrees less than or equal to d, where K 1s a subfield of a d-closed field R..
The complete list of signs of the list L 1s known when the roots of F; in R
have been computed, they are in increasing order, and the sign of each of
the polynomials in each of these roots and on each interval between these
roots 1s computed.

Theorem 2. Let K be an ordered field, subficld of a d-closed ordered field
R. Let
L=1[P,Ps, ..., P

be a list of polynomials of K[X] of degrees less than or equal to d. It is
possible to compute the complete list of signs of L.

Proof: Because of theorem 1 and of the intermediate value theorem for
polynomials of degree less than or equal to d, we have all the tools needed
to apply Hormander’s method to . (cf. [BCR] Chapter 1).

Comment: For a constructivist this theorem has the following provoking
corollary: in a d-closed ordered field, the roots of a polynomuial of degree
< d form a finite set.

Theorem 3 (Thom’s lemma). Let K be an ordered field contained in a
d-closed ordered field R, P be a polynomaal of K[X], of degree n < d, and
[0, 01, ... ,0,] be a list of sign conditions other than = 0. The set

A, ={x e R | P(z)oq, P'(x)or, ..., PD(2)oy, ..., PP V(2)o, 1)}

ts either empty, or an open wnterval with endpoints +oo, —o0, or a root
of one of the polynomials P, P’ P" .... If the sign conditions are relaxed,
and if the open A, were a non empty interval, one gels the corresponding
closed interval. If now the first condition 1s = 0, the set has zero or one
point.

Proof: One can perform the usual proof by induction on the degree of P

(cf. [BCR]).
3.4. Sturm’s algorithm.

Definmition 6: Let K be an ordered field. Let P and ¢) be two polynomials
with coefficients in K and R be the remainder of the euclidean division
of P'Q by P. Let a and b be two elements of K with a < & (or possibly
a = —o00, b = +00), a and b not being roots of P.

The Sturm sequence of P and () is defined by
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Stllo(]DJ Q) =P

Stu1 (P, Q) =R

Stu; 41 (P, Q) = — Remainder(Stu; (P, Q), Stu;—1 (P, Q))

The Sturm sequence of P is obtained when ¢) = 1.

One denotes by vsi (P, @, a,b) the difference between the number of
sign variations in the Sturm sequence at a and at b.

Theorem 4 (Sturm-Sylvester in degree < d in a d-closed ordered field). Let
K be an ordered field, subfield of a d-closed ordered field R. Let P and () be
two polynomials with coefficients in K with P of degree less than or equal
to d. Using the preceding notations, the number vsi(P, @, a,b) s equal to
the difference between the number of roots of P between a and b with () > 0
and the number of roots of P between a and b with ) < 0.

Proof: The classical proof (see for example [GLRR]) works because of
theorem 2.

Remark 4. There are examples of ordered fields with polynomials P of
constant sign on an interval, but with the number of roots predicted by
Sturm non zero: add to an infinitely small positive element €, and consider
the polynomial P = (X% — ¢?).(X? — ¢*) and the interval [¢?, ¢].

Proposition 2 (polynomial of degree d+1 in an ordered d-closed field). Let
P be a polynomual of degree d + 1 in an ordered d-closed field K and let
la,b] (a < b) be an interval of the field K such that P is not 0 at a and atb.
If P is square free vsi (P, 1,a,b) gives the number of sign changes of P on
la,b[. In particular vsi (P, 1,a,b) is always positive or zero and the number
of roots of P in K over Ja,b| is less than or equal to vee(P,1,a,b). If P
is reducible in K[X] (in particular if it is not square-free) vsi(P,1,a,b) is
equal to the number of roots of P in K over |a, b[.

Proof: When P is square-free, consider the roots of all polynomials in the
Sturm-sequence except P in K and repeat the usual proof. When P is
reducible in K[X] repeat the usual proof (see for example [GLRR]).

3.5. Algorithm IF.

Algorithm IF (“inégalités formelles”) proposed in [CR] (on the basis
of [BKR]) in order to determine, by computations in K (only arithmetic
operations and sign determinations) the signs of a list of polynomials at the
roots of a polynomial of degree less than or equal to d may be applied in
any ordered field K with d-closed ordered extension R. because of preceding
theorems.

Algorithm IF, applied to P (of degree less than or equal to d) and
its derivatives, is called RAN (Real Algebraic Number) and works in any
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ordered field K with d-closed ordered extension R.: that is to say that, to
every sign condition on the derivatives predicted by RAN, there corresponds
effectively a root of P in R satistying these sign conditions.

One may also use systems of equations.

A triangular system of equations (of degrees less than or equal to d)
over the field K 1s given by a list of polynomials

P =[P, P ... P
with
Pl c K[X1]5P2E K[XlaXQ]:"' ;Pk EK[XlaXQ:"' JXk]

each P; being monic of degree d; as polynomial in X; with d; > 2 for every
j and dx, (P;) < dy for every h < j. A real solution of the system defined
by the list P is a k-tuple # = [21, 23, ..., 2] in an ordered extension of K,
with:

Pl(:El) = O,Pg(élfl,SBQ) = 0, ,Pk(ﬂfl,l‘g,... ’:»Uk') = 0.

If K has a d-closed ordered extension R, and if all the d; are less than
or equal to d, a root in R of the triangular system may be characterized a
la Thom, by the list of signs of the derivatives of the Pj(x1, z2,...,2,-1, X)
at X = x;, by computations only in K.

The computation goes as follows: the case of one variable corresponds
to algorithm RAN above. In the case of a triangular system one applies the
preceeding algorithm IF in an iterative way (with respect to the number
of variables) and determines, by computations in K, all the codings a la
Thom of the solutions (1, zs,...,zx) in R of the system.

Theorem 6. Let K be an ordered field contained in a d-closed ordered
extension R.. It 1s possible, by computations in K, to characterize a la
Thom the roots in R of a triangular system of equations with coefficients
in K (of degrees less than or equal to d) and to decide the sign of every
polynomial K[ X1, ..., Xi] at these roots.

4. Real closure

4.1. Real closed field.

Definition 7. A field K is real closed if it 1s ordered, if every positive element
1s a square, and if every polynomial of odd degree has a root.

Theorem 7. Let K be a field. The following properties are equivalent
a) K 1s real closed,
b) K is ordered, and d-closed for every integer d,
c) K is real and K[/—1] is algebraically closed,
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d) K is real and every polynomial is decomposable in factors of degree one
or two,

e) K s ordered and the number of roots on an interval |a,b[ (a < b)
cowncides with the number given by applying the Sturm’s Theorem.

Proof
a) = b) is clear (cf. [BCR] page 9).
b) = a) is immediate.
a) = c) as in [BCR] page 9.
c) = d) group the conjugate roots.

d) = a) one starts by proving that for every a, a or —a is a square: it
is sufficient to decompose the polynomial 7% — a as a product of two monic
polynomials of degree 2 and to equate coefficients; hence K is ordered and
2-closed; one constructs easily the sign table of any polynomial, and 1t
i1s then clear that it has a root on every interval where its sign changes
(irreducible factors of degree 2 have no influence on the sign table).

a) = e) after theorem 4

e) = b) Sturm’s algorithm prescribes two roots to a polynomial X% —¢
with ¢ > 0 hence K i1s 2-closed. Then one proves by induction on d that K
is d-closed using Proposition 2.

4.2, How to add one root.

Proposition 3. Let K be a d-closed ordered field, P be a polynomial of
degree d + 1, a and b, a < b, be two elements of K. Let us suppose that
P(a).P(b) < 0 and that P’ is of constant sign over la,b[. There exists
a unique prime cone « of K[X] algebraic over K such that X, satisfies
P(Xy) =0 and a < X, < b. Moreover in any ordered extension L of K,
with a root ¢ of P in]a,b[, there exists a unique K-1somorphism of ordered

fields from K[X,] to the subfield K[c] of L.

Proof: Let suppose for example that P’ is positive over the interval. Let
() be a polynomial of K[X] and let us decide whether it belongs to «. Let
()1 be the remainder of the division of @ by P. If Q)1 is zero (case 1) one
has () € «. Else, let us compute the subdivision defined by the roots of
()1 over the interval ]a, b[, and so the ordered list [a = ug, uy, ..., u, = b].
The successive values of P are in strictly increasing order (by theorem 1).
If P(u;) = 0 for some 7, (case 2), one has to take @) € a. Else P passes
from sign — to sign + over one of the subintervals [u;, u;41], and @1 is of
known constant sign ¢ over the interval Ju;, u;y1] (case 3). One has to take
then Q € a if ¢ 15 > 0.

Let us verify that we have defined a prime cone. Let us make two
preliminary remarks. First, in the case when P has a root ¢ in K on ]a, b,
() belongs to ag (resp. a4, a_) if and only if Q(¢) is 0 (resp. > 0, < 0) and
it 1s clear that we have a prime cone. So we never have to consider case 2.
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For the same reason we never have to consider in the proof cases where P
is 0 at the root of a polynomial of degree < d. Second, if there exists an
ordered extension L of K in which P has a root ¢ on Ja,b,[, P belongs to
ag (resp. a4,a_) if and only if P(c) 1s 0 (resp. > 0, < 0). This implies
that « 1s a prime cone, as well as the existence of a unique K-isomorphism
from K[X,] to the subfield K[| of L.

Conditions 1°) and 5) of definition 3 are trivially verified. Let us look
at conditions 2’a) 2’b), 3’a), 3’b).

2’a) and 3’a): Let us suppose that @ is in aq (case 1). Then Q + S
and S have the same remainder modulo P, this implies ap + @ C a. Also
)S 18 0 modulo P hence ag.a C ayg.

2’b) ag+ay C ay: Let @ and S bein ay (case 3), Q1 and S be the re-
mainders of their euclidean division by P. Let us denote by [ug, uy, ..., u,]
and [vo, vy, ..., ¥y the subdivisions introduced by the roots of ¢); and S
respectively. Let us join them in one subdivision, [wq, wy, ..., w]. The two
polynomials )1 and 57 are positive over the open interval of this subdivi-
sion where P changes sign. Hence (1 + 51 1s also positive on this interval
and the interval 1s a subinterval of those considered for the assignment of
a sign to @ 4+ 5 via Q1 + 5.

3’b) aq.ay C ay: The case of the product is slightly more compli-
cated. It 1s necessary to introduce R, the remainder of the division of (.5
by P, which is also the remainder of the division of 157 by P. One can
consider the subdivision [tg,%1,... %] associated to R and join the subdi-
visions u, v and ¢ in one subdivision {. Let us define A as the quotient of
(2151 by P, that is by the equality @151 = AP + R. One has deg(A) < d.
Over the minimal open interval of the subdivision { where P changes sign,
one knows that ()1 and 57 are > 0, hence if A 1s zero K 1s > 0 which means
that Q5 1s in a4. Else 1t 1s necessary to consider also the subdivision as-
sociated to A and join it with [ in a subdivision m. Over the interval of
the subdivision ]e, d[ where P changes sign A has a sign o and we chose
the endpoint of the interval where P has sign —e. Since P 1s continuous,
there exists a point ¢’ of the interval where P has again sign —o. The sign
of R over the interval, which is constant, 1s then the same as the sign of

R(") = (@151 — AP)(¢), hence > 0.

Comment: We have not supposed P irreducible and we do not use
factorization. It i1s well known that the existence of a factorization i1s not
in general guaranteed from the constructive or computational point of view

[Se].
4.3. Construction of the real closure.

Definition §: A real closure of an ordered field K 1s an algebraic ordered
extension of K which 1s a real closed field. An extension R of an ordered
field K 1s an ordered d-closure of K if 1t 18 a d-closed ordered field and if
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every element of R can be obtained from elements of K by repetition of
arithmetic operations and addition of a root of a polynomial of degree < d.

Theorem 7. [t 1s possible to construct a real closure for every ordered
field K. The real closure ts unique up to unique K-isomorphism of ordered

fields.

Proof: The proof is by induction on d, in order to show that:

(H4) for every ordered field L we can construct a d-closure L4 unique
up to unique L-isomorphism of ordered fields. Morecover if M 1s a d-closed
ordered extension of L there exists a unique increasing L-morphism from
L(®) to M.

For d =1, there is nothing to prove.

Let us suppose the hypothesis (H4) true for d. If K is an ordered field,
if P 1s a monic polynomial of degree d+ 1 in K () [X], and if @ and b are two
consecutive roots of P’ (or at infinity) satisfying P(a).P{b) < 0, we shall
denote by KX ] the d-closure of the field K(¥[X,] with X, root of
P in Ja, b[.

This ordered extension of K is unique up to (unique) K-isomorphism
of ordered fields as d-closed ordered extension of K{4 containing a root of
P over ]a,b[. More precisely hypothesis (Hy) and proposition 3 show the
following lemma.

Lemma. IfM is a d-closed extension of K there exists an algebraic ordered
extension M[X,] of M such that there exists a (unique) increasing K-
morphism from K9 [X,] into M[X,].

Let us use the following obvious notation when iterating the construc-
tion:

KD[X,, )9 [X,,] " [ X0,

T

To obtain K(¥*1) one has to glue together all these extensions: which means
introducing a good equivalence relation over their disjoint union. If

K, = KY[X,, ]9 [Xx.,]Y - [X,,)

and

Ky = KO, 90, ] [ X,

are two extensions as before, there exists a unique K-isomorphism of or-
dered fields of the composite extension

K' = K [X5,] 15, (X,

to

K" = Ko[ X0, V[X,00]) D - [X0, ]
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An element of K; will be considered as equal (in K(d‘H)) to an element
of K, if and only if their images in K’ and K" coincide up to the isomor-
phism. This defines an equivalence relation compatible with the ordered
field structure: reflexivity and symmetry are immediate. Transitivity in-
volves three extensions. It is clear that one gets in this way a (d—i— 1)—closed
extension and that 1t 1s unique up to unique K-i1somorphism of ordered

fields.

It would be interesting to have a more direct proof of the following
corollary.

Corollary. In every ordered field, the Sturm algorithm prescribes a number
of roots posttive or zero.

4.4. Data structure for the real closure.

The preceding theorem does not give immediately a finite data struc-
ture for the elements of the real closure since 1t 18 necessary to construct a
lot of d-closures. Thinking a little about the proof one sees that the whole
d-closure 1s not needed and that it would suffice to add a finite number of
roots of polynomials of degree < d (essentially the polynomials needed in
Hormander’s method (cf [BCR], Chapter 1)). This point of view would
lead to a much more technical proof of the existence of the real closure.

Since we proved that every ordered field may be embedded in a real
closed field, it will be possible now to give a more concrete description of
the real closure.

We have the following result:

Proposition 4. The subfield of the real closure R of K consisting of the
roots in R of triangular systems with coefficients in K is a real closed field
equal to R.

Proof: The ring structure is clear. The existence of an inverse is shown by
induction on the number & of equations of a triangular system. Finally 1t
is clear that by adding one variable one can represent the square root of a

positive number and the roots of polynomials of odd degree with coefficients
in K.

If one deals with a codable field 1t 1s thus possible to represent an
element of the real closure as a polynomial expression of a real root coded a
la Thom of a triangular system. One has to note that a given element of the
real closure admits several representations and that it 1s possible to test by
algorithm IF (with computations only in K) whether two representations
correspond or not to the same element. The computer algebra system
SCRATCHPAD where one may use ordered fields as parameters will be
necessary to implement our point of view.
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5. Comnstructive theory of real closed fields

Theorem 10 (Tarski-Seidenberg principle). Let K be an ordered field, sub-
field of a real closed field R and ® be a formula of the language of ordered
fields in n + 1 variables with coefficients in K, and without quantifiers.
There exists a formula ¥ of the language of ordered fields with coefficients
in K in n variables without quantifiers such that

{yeR"|Ize R O(z,y)} ={y e R" | ¥(y)}

Proof: As in [BCR] by using Hérmander’s method since all the tools
needed are available.

It 1s not difficult to mimic the previous proofs in the framework of the
formal intuitionistic theory of discrete real closed fields with parameters
in K. The general excluded-middle principle is not used, but one has a
restricted excluded-middle of the form:

Vex>0orz=0o0rx <0

which is a formal translation of the discrete character of the order con-
sidered. It 1s not possible to put immediately every formula under prenex
form. Nevertheless the Tarski-Seidenberg principle above implies the pos-
sibility of eliminating one quantifier 3 (before a quantifier free formula),
hence to eliminate quantifiers even in formulas not in prenex form. So that
the theory is also complete. The existence of a model (the real closure of
K) gives a constructive proof of the consistency of this formal theory. In
short, as far as first order statements are concerned, one can use either
classical logic or intuitionistic logic in a real closed field. Let us note also
that a direct proof of the consistency and of the completeness of the formal
intuitionistic theory considered would not give a method for constructing
the real closure of K, as we can see in the example of the theory of dis-
crete algebraically closed fields (the “completeness theorem” is not valid
constructively; on the contrary the consistency of the theory 1s assured as
soon as any denumerable field has an algebraic closure).

Theorem 11. Let K be an ordered field and 11 (K) be the formal intu-
itionistic theory of real closed discrete fields with parameters tn K. Then
11 (K) is decidable, complete and non contradictory. In particular, for every
formula F', “F or not F'7 1s a theorem.
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[BCR]

[BKR]
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