Effective real Nullstellensatz and variants

HENRI LOMBARDI

Abstract. We give a constructive proof of the real Nullstellensatz. So we
obtain, for every ordered field K, a uniformly primitive recursive algorithm
that computes, for the input “a system of generalized signs conditions (gsc)
on polynomials of K[ X, Xs, ..., X;,] impossible to satisfy in the real closure
of K, an algebraic identity that makes this impossibility evident. The main
idea is to give an “algebraic identity version” of universal and existential
axioms of the theory of real closed fields, and of the simplest deduction rules
of this theory (as Modus Ponens). We apply this idea to the Hormander
algorithm, which is the conceptually simplest test for the impossibility of a
gsc system in the real closure of an ordered field.

1) Introduction

This paper is the direct successor of [LR], where we develop the con-
structive elementary theory of ordered fields, in particular the constructive
proof of the existence of the real closure of an ordered field K when one
has a test for the sign of an element of K.

Here, we give a constructive proof of the real Nullstellensatz and its
variants.

The fundamental theorem from which one can deduce the real Nullstel-
lensatz and its variants is the following (cf [BCR)] theorem 4.4.2): let R. be
the real closure of an ordered field K, K[ X] the ring K[X1, Xo,..., X,], [ a
finitely generated ideal of K[X], P a finitely generated cone of K[X] (con-
taining the positive elements of K), M a finitely generated multiplicative
monoid in K[X]; let us consider the semialgebraic subset S of R defined
by:

S={xeR": f(z)=0 for fel, glx) >0 for g e P,
h(z) #0 for h € M};

then S 1s empty if and only if there exist f € I, g € P, h € M with
f+g+h?=0.

The general 1dea of our constructive proof is the following one. For an
ordered field K there is an algorithm, conceptually very simple, for testing
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if a system of gse (generalized sign conditions) on polynomialsin many vari-
ables 18 possible or impossible in the real closure of K. It 1s the Hormander
algorithm (cf. the proof of the Tarski-Seidenberg principle in [BCR] chap.
1), applied iteratively to diminish one at time the number of variables in
the gsc. If one inspects the arguments on which the impossibility proof is
based (in case of impossibility), one sees that there are essentially algebraic
identities (corresponding to euclidean divisions), the mean value theorem
and the existence of a root for a polynomial on an interval where 1t changes
of sign. So the effective real ... -stellensatz will be obtained if one suc-
ceeds to “algebraicize” the basic arguments of the proof and the methods
of deduction.

An important step has already been made with the algebraic version of
the mean value theorem for polynomials (cf. [LR]). One can also verify that
the purely universal axioms in the theory of ordered fields can be expressed
in the form of strong implications (i.e. in an “algebraic identity” form, i.e.
also in a “stellensatzised” form).

Another step consists in translating into a form of constructions of
strong implications certain elementary methods of deduction (as: if A —
B and B — C then A — (). It is necessary moreover to find an
“algebraic identity” version of existential axioms in the theory of real closed
fields. This 1s made through the notion of potential existence.

Let us point out also that an important simplification in the construc-
tion of the real Nullstellensatz is obtained through an “algebraic identity”
version of the Thom’s lemma, given by what we call the mixed Taylor
formulas.

Although we adopt a priori a constructive framework “a la Bishop”, as
developed in [MRR] concerning the theory of discrete fields, since we don’t
define the meaning of the words “effective” and “decidable”, all the proofs
can be read through glasses adapted to the philosophy or to the working
framework of any particular mathematician.

If one accepts the “classical” point of view for example, the effective
procedures in the initializing definitions can be considered as given by or-
acles. So, the proofs given provide a proof in the classical framework, and
without the axiom of choice, of the real Nullstellensatz (and variants) in an
arbitrary ordered field.

If one accepts the classical “recursive” theory point of view, the proofs
given provide uniformly primitive recursive algorithms, “uniformly” under-
stood in relation to an oracle giving the structure of the field of coefficients
of the gsc system.

In Bishop’s framework, we obtain the real Nullstellensatz and its vari-
ants for an arbitrary discrete ordered field.

In this paper we give the theorems, and some relevant proofs. Detailed
proofs, and more constructive comments, can be found in [Lom)].
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2) Strong incompatibilities, evidence and implications

Strong incompatibilities (definitions).

We consider an ordered field K, and X denotes a list of variables
X1,Xs...,X,,. We then denote by K[X] the ring K[X, Xo,...,X,]. If F
is a finite subset of K[X], we let £*? be the set of squares of elements in F,
M(F) be the multiplicative monoid generated by F U {1}, and we shall let
Ms(F) := M(F*?) and M(F) be the part of M(F) formed by products
where each element of appears at most once.

Cp(F) is the positive cone generated by F' (the additive monoid gener-
ated by elements of type p- P - Q* where p is positive in K, P is in M(F),
@ is in K[X]).! We note that we may assume that P is in M (F).

Finally, let 1(F) be the ideal generated by F.

Definition: Consider 4 finite subsets of K[X] : ', IS, F— Iz, containing
polynomials for which we want respectively the sign conditions > 0, > 0,
=0, # 0: we say that F = [F\; F; Fo; F.] is strongly incompatible in K if
we have in K[X] an equality of the following type:

(1) S+ P+%Z=0with S e M(F, UF?),
PeCp(F>UFS), Zel(F-)

Every strong incompatibility written in the form (1) can be rewritten as a
strong incompatibility in the following form (2):

(2) S+P+Z=0 with§eM(F2UFR),
PecCp(Iyuls),Zel(l:)

We can indeed multiply the first equality by a suitable element of M (Fy)
to obtain each polynomial (in the first term S) with an even exponent.

It 1s clear that a strong incompatibility is a very strong form of incom-
patibility. In particular, it implies it is impossible to give the indicated signs
to the polynomials, in any extension of K. If one considers the real closure
R of K, the previous impossibility is testable by Hormander’s algorithm, for
example. Moreover 1t 1s then constructively equivalent to 1ts formulation in
form of various implications: for example “P = 0 = ) > 0” is equivalent
to “P =0,—0) > 0 1s 1impossible”. We shall speak thus of strong incompat-
whility, strong tmplication, or strong evidence, meaning always implicitly a
strong incompatibility.

1Tt would be more correct to denote Cp(F, K+;K[X]) in order to state: a)
the positive elements of K are in the positive cone, and b) the positive cone
is the one generated in K[X].
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Notation: We use the following notation for a strong implication:
([S1>0,...,8>0,P,>0,...,P>0,2,=0,...,Zr =0,
Ni#0,...,Ny #0] = Q10)"

Note that if one takes 1 = 0 in the right-hand side in the above strong im-
plication, and applies the definitions, one obtains exactly the strong incom-
patibility for the left-hand side of the implication. Thus we can formulate
any strong incompatibility in form of a strong implication.

Notation: Let us denote by the left-hand side in the preceding notation.
Let us denote by ' a system of gsc : Q171 0,...,Qx 75 0. We then write:
*( = ')* to mean

*( — 621’1'1())#= and ... and*( — QkaO)*

Remark: We could have an algebraic identity version for any quantifier free
formula in the language of ordered rings with constants in K.

The Nullstellensatz and its variants.
The different variants of the Nullstellensatz in the real case are conse-
quences of the following general theorem:

Theorem. Let K be an ordered field and R a real closed extension of K.
The three following facts, concerning a gsc system on polynomials of K[ X],
are equivalent:

strong incompatibility in K

imposstbility in R

imposstbility in all the ordered extensions of K

This Nullstellensatz was first proved in 1974 ([Ste]). Less general vari-
ants were given by Krivine ([Kri]), Dubois ([Du]), Risler ([Ras]), Efroym-
son ([Efr]). All the proofs up to now used the axiom of choice. The first
formulations were geometric: affirmation of the existence of an algebraic
identity insuring that a given polynomial satisfied a given gsc on an alge-
braic or semialgebraic given set.

One speaks of Nullstellensatz when one considers the condition for
a polynomial to belong to the ideal of a given algebraic variety (i.e. an
implication: “equalities to zero imply an equality to zero”); of weak Null-
stellensatz when one considers the condition for a given algebraic variety to
be empty (i.e. “equalities to zero are incompatible”), of Positivestellensatz
when one considers the condition for a polynomial to be strictly positive on
a given semi-algebraic variety (i.e. the general form of the incompatibility
between gsc, seen as an implication, the conclusion of which 1s a strictly
positive sign), of Nichtnegativestellensatz when one considers the condition
for a polynomial to be nonnegative on a given semi-algebraic variety (i.e.
the general form of the incompatibility between gsc seen as an implication
the conclusion of which is a nonnegative sign). Let us for example give the
general Positivestellensatz.
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Theorem (Positivestellensatz). Let K be an ordered field and R a real
closed extenston of K. Lelt A be the semi algebraic set in R” defined as:

A={zeR" :S1(x) >0,...,5(x) >0,Pi(x) >0,..., Pj(x) >0,
Z1(x)=0,...,Zk(x) =0, N1(x) #0,..., Ny(2) # 0}
Let @ be a polynomial in K[X]. Then @ is positive at each point of A if
and only if there is algebraic identity: Q- P =S - N? 4+ R+ 7 where:
P and R are in the positive cone of K[X]: Cp(S1,...,Si, P1,..., Pj);
Z is in the ideal of K[ X]: 1(Z1,...,7%);
S s in the monoid M(Sy,...,S;) and
N is in the monoid M(N1, ..., Np)

Some trivial strong implications.

Proposition 2. We have the following strong implications.

(U>0,V>0 = [U+V>0U-V>0)"
(U+V>0,U-V>0 = [U>0,V>0])
(U>0,V>20 = U+V >0
(U>0,U-V>0 = V>0
(U 40 = U”>0)"
(U2 >0 = U#£0)*
=0 = U-V=0)
U=V = PX,U)=P(X,V))"
(U=V,Vr0] = Ur0)* (70 s a gsc)
W=0U=V4+W.Z2] = U=V)"
W=0UU=V+W.-Z Vsl = Ur0)*
([ = N+U°>U 140> -U)*

One proof: Let us prove the last but one strong implication when 7 1s >.
We have to give a strong incompatibility between the following gse:

W=0V+W.-Z—-U=0V>0-U2>0
we can take:
V2 (U) V)+((Z2- V) WH (V) (VEW-Z-U))=0
with
Ve M(F > UF}?),(=U)-V € Cp(Fs U Fs),
(Z- V) W4 (=V)- (V4+W. -Z-U)€I(F=)
Q. E. D.



268 HENRI LOMBARDI

Proposition 3 (substitution principle). If, in a strong implication, one
replaces each occurrence of one variable by a fived polynomial, one obtains
again a strong implication.

The proof is trivial. So, the strong implications of proposition 2, stated
for variables U and V, are also valid for polynomials U(X) and V (X).

Constructions of strong implications.

Definition 4: We speak of construction of a strong implication from other
strong implications when we have an algorithm that constructs the first
from the others. So it 1s a logical implication in the constructive meaning.
We denote it by the symbol: = For example we give explicitly (theorem 8)

cons
the construction which proves:

[*( :\,> f)* and *(:’ :,> :’f)*] l_ *( :’\> :'f)*
As another example, we can state the principle of substitution in the form:
(X W) = (X, W) F (X P(X) = (X, P(X)))

cons
Lemma 5. Let be a gsc system on polynomials of K[X], Q an element of
K[X]. Then each strong implication of the form *( = Q70)* (where T
is =, < or >) can be interpreted as any “weaker” strong implication *( —
Q7' 0)*. For example, one has
(= Q>0 F( = Q=0)
cons

Proposition 6. Let be a gsc system on polynomials of K[X], @ be an
element of K[ X], then:

(= Q<0 and™( = Q=0)] F (= @=0)".

cons

Likewise:
(= Q@<0)" and"( = Q#0)] F'( = Q<0

cons

and
(= @=0)" and™( = Q#O)*]CL— (= 1=0)".

ns

Proof: Let us give the first construction. Call Fy, F'», F—, Fx the 4 finite
subsets of K[X] containing polynomials for which we have respectively the
sign conditions > 0, > 0, = 0, # 0 in the hypothesis .

The hypothesis *( = @ < 0)* can be rewritten in the form
(L@ >0] = 1=0)" and means that we have an equality:

S+P+7=0

with

SeEMFFUFFULQ™Y), PeCp(F>UF, U{QY}), Z € I(F-)

l.e. also:

Q™ S1+Q-Pi+R+72,=0
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with

St € M(FEUFLY), PR €Cp(F> UFs), 7y € I(F2)
Likewise the hypothesis *( = @ > 0)* means we have an equality:

Q™™ Sy —Q Pyt Ro+ 7o =0

with

Sy € M(FZ*UFL?), Py, Ry € Cp(F> UFs), Zy € I(F2)
We rewrite the two equalities:

—Q-PL=Q" - Si4+Ri+71,Q Po=Q" - Ss+ R+ 7

and we multiply: so
—Q% PPy = QTS S+ [Q7 S Ro+ Q7 - So - Ri+ Ry - Ra]+ W
with W e I(FZ), so Q?"T2M .S, . S5 + V + W = 0 with:

S1-S2 € M(FZPUFLY), V eCp(F> UF), Wel(F2)
and this is precisely a strong implication *( — @ = 0)*. Q. E. D.

The following theorem is a corollary of proposition 6.

Theorem 7 (proof by cases, according to the sign of a polynomial). To
show that s strongly incompatible, it 1s sufficient to construct a strong
incompatibility for each of the 3 cases: () >0, () <0, () = 0.

Theorem 8 (transitivity of strong implications). Let , ', " be three gsc
systems on polynomials of K[ X].
Then: [*( : I)* and *([’I] : H)*] '_ *( : H)*

cons

Proof: It is sufficient to remove one after the other the hypothesis of / in:
* ([’ f] j ff)* )

Thus one may assume that ’ contains a unique hypothesis @ 70.

It 1s thus sufficient to show that if one has two strong implications
(= Qr0)*, and *([Q@70,A] = 1 =0)*, then one can construct the
strong implication: *([, A] = 1= 0)" (where A is a gsc on a polynomial).
But this can be done by cases according to the sign of (). Q. E. D.

Combining the transitivity of the strong implications and trivial strong
implications, one obtains many corollaries, for example:

Corollary (example).

(= [P-Q>0,Q>0) F*(= P>0)

cons



270 HENRI LOMBARDI

Mixed Taylor formulas (strong evidence of Thom’s lemma)

Let us at first recall Thom’s lemma and the coding “a la Thom”:

Thom’s lemma. Let R be a real closed field, P € R[T], of degree d,
01,09,...,04 a list of > or <. The sel

{teR:Pt)cr0,...,P0) )0 0,..., P D) 0,0}

15 either empty or an open interval. In the latter case, its closure 1s obtained
by weakening the signs o;. In the same way, the set: {Tr € R : P(t) = 0,
P'({t)e10,...,POW) e, 0,..., POU) a0V is either empty or reduces to

one point.

Definition of the “coding & la Thom”.

Let K be an ordered field, R its real closure. An element { of R 1s
said to be coded @ la Thom (in K) if it is given as a root of a polynomial
P of K[X], specifying the strict? signs of P'(¢), P"({),etec. ..

An open unbounded interval of R is said to be coded a la Thom (in
K) if it is given as the set of elements & which give specified strict signs to
a list of polynomials [P, P’, P, etc... ], the finite bound @ of the interval
being obtained for P(a) = 0.

A bounded open interval of R is said to be coded a la Thom (in K) if
it 1s given as the set of elements & which give specified strict signs to two
lists of polynomials [P, P, P", etc... | and [@, @, Q", etc...], the bounds
« and 3 of the interval being obtained for P{a) =0 and Q(7) =

NB: Each point of R, but only few open intervals of R, can be coded a
la Thom in K. The important fact 1s that the minimal open intervals of
Hormander tableaux (cf. §4) are naturally coded a la Thom.

One considers now two variables U and V and one lets A : U — V. One
considers a polynomial P with coefficients in an ordered field K or more
generally in a commutative ring A which 1s a -algebra.

If deg(P) < 3, one has the following 4 mixed Taylor formulas:

Py = P(V)=A-P'(V)+(1/2) - A*. P"(V) 4+ (1/6) - A% . P
PU)=P(V)=A-P(V)+(1/2)- A% P"(U) = (1/3) - A% . P13
P(U) = P(V) =A - P/(T') = (1/2) - A . P"(V) — (1/3) - A® . P
P(U) = P(V) =A - P'(U) = (1/2) - A - P"(U) + (1/6) - A® . P&

Assume now that I/ and V' give the same strict sign ¢ to P/, and the same
strict sign ¢ to P”. Then, if we give a sign to A and P, one of the 4

2We say a sign to be strict when it 1s +1 or —1.
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mixed Taylor formula is strong evidence showing that P(U) — (V) and
A - P'(U) have the same sign. For example, if ¢ = 4+1,¢6"” = —1 and if
A >0, P®) <0, the third mixed Taylor formula can be reread:

P(U) = P(V) = A (P'(U) = (1/3)- A% P¥) —(1/2) - A*. P"(V)

Conversely these mixed Taylor formulas provide strong evidence in order
to obtain the sign of A from the sign of P(U) — P(V). In particular, they
provide strong evidence that two roots of P coded a la Thom by the same
sign sequence are equal. If deg(P) < 4, one has the following 8 mixed
Taylor formulas:

Py —P(V) =
AP (V)4 (1/2)- A2 P"(V)+ (1/6) - A3 - PO (V) + (1/24) - A*. P
Py —P(V) =

A-P(VY+(1/2) - AT PV 4+ (1/6) - A% PE () — (1/8) - AT P
A-P(V)+(1/2)- A2 P"(U) = (1/3) - A% . PBI(V) — (5/24) - A*. P
AP(V)+(1/2)- A*  P"(U) = (1/3) - A® . PON(U) + (1/8) - A* . P
A-PI(U) = (1/2) - A2 P"(V) = (1/3) - A3 . PO(V) — (1/8) - AT. P
A-P(UY—(1/2) - A*- P"(V) — (1/3) - A% . PO(U) + (5/24) - A* . PO
A-PIU) = (1/2) - A% P"(U) + (1/6) - A% . PO(V) 4+ (1/8) - A*. PO

A-PI(U) = (1/2) - A2 P"(U) + (1/6) - A3 . PO (U) — (1/24) - A* . P&

As all the possible sign combinations appear, one obtains: if U/ and V
give the same sign sequence to the successive derivatives of a polynomial
P of degree < 4, then one has strong evidence that P(U) — P(V) and
(U = V) - P(U) have the same sign. Likewise, if /' and V' don’t give the
same sign sequence to P and its successive derivatives (P of degree < 4), one
of the mixed Taylor formulas for P, P’, P” or P®) provides strong evidence
for the sign of A from the signs of PU)(V) and PU(U)(i =0,...,4).

Theorem 9 (mixed Taylor formula). For each degree d, there are 2d-1

mized Taylor formulas and all the possible sign combinations do appear.

Proof: Linear algebra shows there 1s a mixed Taylor formula for each

choice (i = PUO(U) or PO(V),i = 1,...,d —1). The difficult point is
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showing that all the possible sign combinations do appear. From the al-
gebraic mean value theorem for polynomials, we can obtain the following
result: if we choose PU)(V) the signs of the coefficients of P%) and PO+
are equal, and 1if we choose P(i)(U) the signs of the coeflicients of PU) and
PU+L) are opposite. Q. E. D.

Theorem 10 (strong evidence of Thom’s lemma). Let P € K[X][T], of de-
greedinT, oy,09,...,04 alist of > or <. Denote by (X,U) the gsc system:
P(X,U)o10,...,PP(X,U)0;0,...,PY9(X,U) 040, (derivatives with re-
spect to I"). Write (U) for (X,U), P(U) for P(X,U) and so on: One has
then the following strong ecvidence:

(1) “([(T), (V),P(U)=P(V)] = U=V)

(2) (L), (V)] = sign((U = V) - P'(U)) =sign(P(U) - P(V)))*

(3) [(U), (V), (W =U)- (W =V)<0] = (W))"

(4) V), POW) #:0] = (W=T)-(W=V)>0)"
(i=1,...,d)

Let ' be the gsc system obtained from by weakening all the sign conditions
except those referring to P9 . One has then the following strong evidence:

() (M), V), U <W <V] = (W))"

Note that (1) is one of the six strong implications written in the abbre-
viated form (2), and that the d strong incompatibities in (4) are the same
as the ones in (3).

Proof: (1) and (2) are obtained from mixed Taylor formulas as has been
explained for degree 3. The d strong implications (3):

(), (V), (W =U) - (W=V)>0 = POW)o; 0)"(i=1,...,d)

are proved by steps, for ¢ decreasing from d to 1, using at step P() a mixed
Taylor formula for P), and applying transitivity for strong implications.
(5) is proved in the same way. Q. E. D.

Note that theorem 10 doesn’t capture entirely Thom’s lemma in form
of strong evidence: statements concerning the bounds of the interval are
missing. This gap 1s fulfilled in the section on the Hormander tableaux,
and requires the notion of potential existence.
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3) Potential existence

Notations and definitions.

A strong implication *( = ')* is a strong form (in an algebraic iden-
tity form) for the corresponding universal implication: VX ( — ’). But
the theory of real closed fields has axioms which are not purely universal.
So, we require a “stellensatzised” form for statements of the following type:

VX 3T (X, 7).

We should like to speak of potential existence when a gsc system 1s not
strongly incompatible.

In fact, we want a little more. The non 1mpossibility of the equation
P(X) = T7? taken in isolation is not the same thing as the non impossibility
of the equation P(X)? = 7. Indeed, in the second case, contrarily to
the first, whatever hypothesis 1s made on X, adding the equation cannot
introduce a contradiction. This distinction 1s translated in logic by an
alternation of quantifiers:

VX AT P(X)? =T

A “direct translation” of this alternation in terms of strong implication
would seem to be: for each not strongly incompatible specification a la
Thom of the X;, the system (X, 1) is not strongly incompatible. But, in a
general proof, a specification of the X; may depend on values of parameters
Y;. So we are led to the following definition.

Definition 11: Let 1(X) be a gsc system on polynomials of K[X] and
2(X, T) a gsc system on polynomials of K[X,71,75,...,T,] = K[X, T].
We shall say that the hypothesis 1(X) allow the existence of T; satisfying
2(X, T) when, for all gsc systems (X, Y) on polynomials of K[X, ¥], one
has the construction of the strong implication:

*([Z(X: T),(X, ﬂ] — 1:0)* - *([1(X),(X, Y)] — 120)*'

cons

We shall speak also of the potential existence of T; satisfying » under the
hypothesis ;.

NB: The condition on 1s that no variable 74,75, ...,7T,, 1s 1n 1t; but
this 1s possible for other variables, distinct from Xy, X9, ..., X,,, hence the
K[X, Y]

Notation: We shall denote this potential existence by:

*(1 — 4T 2)*.
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We can specify the variables in the gsc systems, we then write:
(1 X) = AT (X, T)".

When the system ; is empty, we shall use the notation: *(3T 5)*.
For example, we shall show:

“(P(X,U)-P(X,V) <0 = IWP(X,W) =0)"

Note that the substitution principle stated in the preceding paragraph can
be rewritten in the form:

(X, P(X)) = IW (X, W))"

Remarks:

1) At first, we insist on the constructive reading of the above definition:
the construction of the strong implication is to be provided by a uni-
form algorithmic process.

2) The notation is to be read as a unit (contrarily to the notation con-
cerning constructions of strong implications).

3) If L is a given ordered extension of K there is not any obvious a priori
relation between a statement *(; (X) = 3T »(X, T))* read in K and
the same statement read in L. In fact, after the Nullstellensatz’ proof,
it 18 clear that the two statements are equivalent to the statement:
Va(1(x) = 3Tt 2(x, t) ) read in the real closure of K.

Some rules of manipulation for potential existence statements.
Among the following rules, only the substitution rule is not immediate.

Lemma 12. Any potential existence *(1(X) — 3T o(X, T))" remains
lrue:

a) if one weakens the conclusion,

b} if one strengthens the hypothesis, or

¢} if one suppresses behind 3 some variables that are not in o(X, T).

Proposition 13. (simultaneous reinforcement of the hypothesis and the
conclusion).
if
“(1(X) = 3T (X, 1))

then
"(L(X),3(X)] = 3T (X, T), 3(X)])"

(recall of the hypothesis in the conclusion).

if
(1(X) = AT (X, D))"
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then
"(1(X) = 3T (X, 1), (X)])"

Proposition 14 (potential existence as a generalization of strong impli-
cation). Assume that the gsc systems 1 and o act only on the variables X.

Then *(1(X) = 3T o(X))" if and only if *(1(X) = 2(X))*.

Proposition 15 (rule of proof by cases). Let Q) be a polynomual of K[ X].
In order to settle a potential existence: *(1(X) = 3T o(X, T))* it is
sufficient to prove the potential existence

(1(X), Qo 0] = 3T »(X, T))"
for the three o possible.

Proposition 16 (existence implies potential existence). Let
Py, Po, ..., Py € K[X]

and let us denote P(X) for Pi(X), ..., Pn(X).
If *(1(X) = o(X,P(X)))* then *(1(X) = 3T (X, T))*

Theorem 17 (transitivity of potential existence). One considers variables
X1, Xo,oo 0, X, Ty, Ty T, Ur, Uay oo Uk and gse systems 1(X),
2(X, T) and 3(X, T, U). If one has

1(X) = AT (X, I))”

and
*([1('X)32(X5 T)] — E|U3(X, T: U))*

then one has also
*(1(X) — ElT: U [1(X), 2(X= T), S(X: T, U)])*

Remark 4. Combining the preceding theorem and proposition 14, one ob-
tains some variants. A strong implication followed by a potential existence
gives a potential existence. A potential existence followed by a strong im-
plication gives a potential existence. Note also that we may see proposition
14 as a particular case of lemma 12 c).

Theorem 18 (substitution principle in potential existence). One consid-
ers vartables X1, Xq, ..., X, Z1, 7o, ..., Z;,T1, 15, ..., T, and polynoma-
als Py, Po, ..., Py of K[Z]. Let us write P(Z) for Pi(Z),..., P,(Z).

If one has

(a) "(1(X) = 3T (X, T))



276 HENRI LOMBARDI

then one has also

(b) “(1(P(7)) = 3 Ta(P(2), T))
Proof: Assume

(1) "(2(P(2),T),(2,Y)] = 1=0)
We want to construct

(2) "((P(2),(2,Y)] = 1=0)

) kX 1),(2Y),X=P2)] = [(P2),1)(2 7))
Transitivity on (1) and (3) gives:

(4) (X, 1),(2,Y), X=P(2)] = 1=0)

The definition of potential existence gives:

(5) "((X),(2,Y),X=P(2)] = 1=0)

We have also (trivial strong implications):

6)  "((P(2)),(2.Y),X=PZ)] = [(X),(2Y),X=PZ))
Transitivity on (5) and (6) gives:

(7) "([L(P(2)),(2,Y),X=P(Z)] = 1=0)

If we substitute P(Z) for X in (7), we obtain (2) Q. E.D.

Remark 5: The proofs of potential existence can generally be given directly
in the form (b). Theorem 18 merely allows one to see more clearly the
structure of theorems stating potential existence.

Remark 6: If one applies theorem 18 once again, one can substitute some
X; for some Z;. One sees thus that the hypothesis that the X; and the Z;
are distinct 1s in fact useless.
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Fundamental potential existence

Theorem 19 (authorization to add the square root of a positive element).
“U>0 = ITU=T%"

Theorem 20. (authorization to add the inverse of a nonzero element):
W40 = FT1=U0-1Y

Proof: Assume without loss of generality that U/ is the variable X,,. Con-
sider a gsc system (X). Notation is as in the proof of proposition 6.

Let us write Cp’, I’ when we consider the positive cone or the ideal
generated in the polynomial ring with the extra variable 70 K[X,1] =
K[Xy, Xo,..., X, T

We want to give the construction:

((1-U-T=0 = 1=0)" F*([[JU#£0 = 1=0))".

cons

The hypothesis is an algebraic identity:
SIX)+PAX,D)+(1-U-1)- V(X T+ 2Z(X,T)=0

where
S1 € M(FZPUFF), PLeCP (Fs UF), 2y € I'(F2).

More precisely:

S1X) + 3 QulX) VX)) + (1= U -T) - Yi(X.T)
+ ZT:Nj(X) Wi (X,7)) =0

where Q;(X) € Cp(F> U Fy) and N;(X) € F=. Informally: let us work
modulo (1 — U -T'). Replace everywhere in V; and W;, T by 1/U so that
T disappears, then multiply by a suitable /%™ in order to suppress the
denominator. More precisely: the same final result should be obtained if
we first multiply by U*™ (m > deg,(V;) and 2m > deg, (W;)) and then
replace each U% - T* in V; and W; by 1 modulo (1 — U - T).

One obtains thus an algebraic indentity:

h
SUX) - U™ 4+ Qi(X) - AF(X)+ (1-U - T) - Yo X, T)+

ZT:Nj(X) -C3(X) =0
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One now has Y5(X,7T") = 0 (otherwise consider in Y5 the monomial of maxi-
mum degree in 7). The remaining algebraic identity is a strong implication

(LU#£0 = 1=0)"
h
SUX) - U2 4+ 3" Qi(X) - AXHX) + > Nj(X) - C5(X) = 0

Q. E. D.

Corollary 1 (authorization to add the inverse of the square root of a
strictly positive element).

(U>0 = 3T 1=U-T%"

Corollary 2 (the weak real Nullstellensatz implies the other real ... stel-
lensatz). Assume that for each natural number n and all systems of equali-
ties to 0 on polynomials of K[X], the impossibility in R (real closure of K)
mmplies the strong incompatibility in K. Then, for all gsc systems on poly-
nomials of K[X], the tmpossibility in R tmplies the strong incompatibility
in K.

Remarks 7: Theorems 19 and 20 “give the authorization” to add the root(s)
of an equation of degree 1 or 2. Theorem 19 is also a consequence of theorem
21. Corollary 1 can be proved as in theorems 19 and 20. Corollary 2 is thus
“directly” provable without the general theory of potential existence, as in
the algebraically closed case.

Theorem 21 (authorization to add a root on an interval where a poly-
nomial changes sign). Denote by P(U) a polynomial P(X,U). Then we

have:

([P(U)-P(V)<0,U < V] =
AW[P(W)=0,P(U)-P(V) <0,U <W < V])*

Proof: Notation is as in the proof of proposition 6.
FIRST PART: We prove the potential existence
(PU)-P(V)<0 = IW P(W)=0)"

We give a proof by induction® on the degree in T of P(X,T). When
deg(P) = 0 or —1, the result is easy.

3This proof “recopies” the classical proof of “if we have an ordered field
and if P(u) - P(v) < 0 with P irreducible, then the field K[W]/P(W) is

real”.
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One may assume the variables U and V to be two variables X;.* For
any gsc system without the variable W we have to give a construction:

(LP(X,W)=0 = 1=0)" F

cons

(LP(XU)-PX,V)<0] = 1=0)
which we may reread:

(= PXW)#0)" F (= PX,U) P(X,V)>0)

cons

Assume at first P is monic. The strong implication *( —= P(X, W) # 0)*
1s written as an algebraic identity:

SHX)+ ) Qi(X) B (X, W) - P(X, W) G(X, W)+
iNj(X) CCH(X, W) =0

i=1

with Q;(X) € Cp(I*> U F5) and N;(X) € F=. The polynomials B; (X, W)
and C;(X, W) may be taken modulo P in W (because P is monic), and
so degy (G) < degy (P) — 2. The same equality may be reinterpreted as
various strong implications:

(1) (= GX, W) #0)
(2) (= P(X,W) -G(X,W) > 0)
Then, by substitution in (2),
(= PXU)-GXU)>0)7 (= PX,V) - G(X,V)>0)"
Hence,
= PX,U)-GXU)- PX,V) - G(X,V)>0)"

By the induction hypothesis, (1) implies that we can construct a strong
implication:

(= GX,U)-G(X,V)>0)".
But by trivial strong implications:

([P(X,U)GX,U)-PX,V)G(X,V) >0, GX,U)-G(X,V) >0 =
P(X,U)-P(X,V)>0)

We conclude the proof by transitivity of strong implications.

“According to the substitution principle for potential existence, we may
actually assume we are in the generic case where U/, V' and the coefficients
of P are all independent variables X;.
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Assume now P 1s not monic.

Let C'(X) - W" be the leading monomial of P(X, W). Let R(X, W) =
P(X,W)—-C(X) - W". (so degy (R) < degy (P)). Consider a new variable
T, and consider the polynomial P (X, T, W) =T - R(X, W)+ W". We give

a proof of the potential existence by cases, according to the sign of C'(X).
Ist case: C'(X) = 0. We have
([PXU)-P(XV) <0,0(X)=0] = R(X,U) R(X,V) <0)°
and by the induction hypothesis
(RX,U)-R(X,V) <0 = JW R(X,W)=0)"

As
([R(X,W)=0,C(X)=0] = PX,W)=0)"

we conclude the proof by transitivity.
2nd case: C(X) # 0. We have
OX)#0 = FT1=0C(X)-T1T)",
M=0(X)-T = T -P(X, W)= P(X,T,W))*
and
(1=C(X) T = PX,W)=0C(X) P(X,T,W))*
SO
(P(XU)- PX,V) <0,0(X) #0] =
AT =C(X)-T,PA(X, T)U)- (X, T,V) <0])
As Py 1s monic,
(PX,TU)P(XTV) <0 = AWP(X, T, W) =0)
By transitivity,
([PXU)- P(X, V) <0,0(X) #0] =
AT W 1 =C(X) - T, P (X, T, W) =0])"
Hence,
([P(X,U) - P(X,V)<0,0(X) #0] = IT'W P(X,W)=0)",

where we may remove T'.

SECOND PART: Proof of the potential existence stated in the theo-
rem.

We don’t give the detailed proof. One may mimick the classical proof:
if a root w of P is not between u and v, then we consider the polynomial

P(Z)/(7Z — w), which also changes sign between u and v. So we may
conclude by induction on deg(P). Q. E. D.
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4) Strong evidence of the facts
readable from a Hormander tableau

Recall at first Hormander’s algorithm.

Proposition 22 (Hormander tableau). Let K be an ordered field, subfield
of a real closed field R.
Let L =[Py, Ps, ..., Pi] a list of polynomials of K[X].
Let P be the polynomaal family generated by the elements of L and by
the operations P — P', and (P, Q) — Rem(P, Q). Then:
1) P is finite.
2) One can set up the complete sign tableau for P using only the following
informalion:
a) the degree of each polynomial in the family;
b) the diagrams of the operations P — P’ and (P, Q) — Rem(P, Q)
(where deg(P) > deg(Q)) in P ; and
c) the signs of the constants of P.°

Proof: 1) is easy.

2) We number the polynomials in P in order of nondecreasing degree.
Let P, be the subfamily of P made of polynomials numbered 1 to n. Let us
denote by 7, the Hormander tableau corresponding to the family P,: 1.e.
the tableau where all the real roots of the polynomials of P,, are defined via
a coding a la Thom, listed in increasing order, and where all the signs of the
polynomials of P, are indicated, at each root, and on each interval between
two consecutive roots (or between —oc and the first root, or between the
last root and 400 ).

Then by induction on n 1t 1s easy to prove that one can construct the
tableau 7, from the allowed information. Q. E.D.

We are going to give a sufficiently faithful sketch for the proof of:

Theorem 23 (real Nullstellensatz in one variable). Let K be an ordered
field and R. its real closure.

Let P be a family of polynomials of K[X] and (X) be a gsc system on
elements of P.

Then:

either (x) 1s impossible in R and then *( — 1 =0)" wn K, and thus
(%) is impossible in any ordered extension of K.

or (x) s possible in R and then *(3X (X))* in K and in any ordered
extension of K.

®Note that the constants in P are essentially the leading coefficients of
polynomials in P, and the values P(£) where P is a polynomialin P and £
a root of a degree one polynomial in P.
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One may assume that the family P is closed under the operations “re-
mainder” and “derivation”. The impossibility of (x) in R or the existence
of  in R verifying (z) is directly readable from the Hormander tableau of
the family, and can be tested solely by computations in K. We are going to
show how the construction of the Hormander tableau can be transformed,
step by step, into strong evidence and potential existence which translate
all the facts readable from the Hormander tableau. If one now considers
a given extension L of K, one may apply to , L and its real closure, the
results obtained for | K and R.: as the test 1s made solely by computations
in K the possibility or the impossibility will be equivalent in the two cases.

When the field K is real closed.

Thus one has R = K. Let v, v, ..., v, be the finite list of points in
the Hormander tableau of the family P. One can compute vy and vg4q 1n
R such that the strong evidence for the signs of all the P € P 1s easy to
state for # < vy and for * > vi41.

The possibility or otherwise in R for a given gsc system is immediately
readable. Possibility occurs either for a vy, or for an # = (v; 4+ viy1)/2
and this implies the potential existence. The incompatibility in R for a
gsc system 1s also readable from the Hormander tableau, but the strong
incompatibility requires a new argument. One argues by cases, and it is
sufficient to state the strong incompatibility for at least one gse in : at each
point v; on the one hand, on each open interval |4, v;41[ on the other hand,
and finally for X < vy and for X > ;4. At a point v; the sign of each
P(v;) 1s strongly evident in R (since v; € R). On an interval Jv;, v;41][, the
signs, constant and non zero, of the P € P are all strongly evident from
the signs at the end-points modulo a suitable mixed Taylor formula (cf.

theorem 10(5)).

In the coefficients field.

We want to state, for all the facts readable from the Hormander
tableau, strong incompatibility and potential existence in K. We have now
to follow the Hormander algorithm step by step, 1.e. introducing the points
in the Hormander tableau one after the other. We begin by computing «
and b in K, such that for # < a and for x > b, the signs of the polynomials
in P are strongly evident. These 2 elements of K will replace —oc and 400
in the Hormander tableau.

One first proves the lemma:

Lemma 24 (strong evidence and potential existence for the elementary
facts readable from a Hormander tableau). Let K be an ordered field and
R its real closure. Let P be a family of polynomials of K[X] closed under
the operations “remainder” and “derivation”, and let T be its Hormander
tableau.
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1) the points of the Hormander tableau, defined a la Thom by their con-
struction, satisfy the potential existence for their coding & la Thom.®

2) the comparison of 2 points of the tableau is strongly evident from their
coding a la Thom.

3) at each point o in the tableau, the signs of all the polynomials in the
family are strongly evident from the coding a la Thom for a.

4) at each point of a minumal open wnterval in the tableau, the signs of
all the polynomzals previously introduced are strongly evident either
from the coding a la Thom for the interval bounds (if the interval is
unbounded, only the finite bound is to be considered) and from the fact
that the point 1s between the bounds, or also from the coding a la Thom
for the wnterval.

Proof of the lemma: We prove the lemma for the family P, and the
tableau 7, , by induction on n. The lemma 1s evident when all the polyno-
mials are constants.

Let us go from n to n + 1. If A is a point of 7,, we shall denote by
()1 (X) the first polynomial of which X is a root, and (X) the gsc system
which is its coding a la Thom (A is the only point of R verifying y(A)). Let
now P be the polynomial numbered n + 1, of degree d > 1.

In the following proof we examine only bounded open intervals. The
modifications for the other case are easy.

For each point A of 7, we introduce a new variable X,. In order to
have a more readable proof, we shall write A for X,.”

point 1): The only problematic points are roots of P. The sign of P at a
point A of 7,, is strongly evident from the sign of Rem(P, @4)(A) and from
the fact that @x(A) = 0; thus also, by the induction hypothesis (3), from
A(A). Let ¢ be a root of P on the minimal open interval Jo, 3] of T,. We
have thus

(o) = P(a) > 0)" and "(5(8) = P(F) < 0)" or vice-versa.
By the induction hypothesis (2) we have

(o), 5(8)] = o< f)

Theorem 21 and transitivity of potential existence give us

“(lal@), 5(8)] = IX[o <X <8, P(X) =0])

®A single point could be coded & la Thom via distinct polynomials. The
coding we consider here is the first that appears in the tableau construction.
“The A that we must read as Xy, are clear from the context.
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Again by the induction hypothesis (3), there are 7, € {<, >}t =1,...,d)
such that, if we call 7% the sign < or > associated to 7;, we have:®

“(ola) = [PD(a)ri0(i=1,...,d=1),P9a)r 0D
*(5(8) = [PUB) 706 =1,...,d—1), Pl(B) r40])"
Let us apply mixed Taylor formulas (theorem 10(5)) and transitivity:

(o), 5(9)] =
AX[a < X < B3, P(X)=0,PX)r0(=1,...,d)])"
We have previously
" (3, flala), 5 (5)])°
By transitivity,
“(AX[P(X) =0, POX)ri0G=1,...,d)])"
We rewrite this potential existence

"(3C Q)
point 2): We have already the strong implications
(ala) = PU(a)70)*) (a(a) = P(a) > 0)"
(or < 0) and
“(ol@) = PW(a)r,0)7,

So the sign of oo — ( 1s strongly evident from the codings a la Thom of «

and ¢ via theorem 10 (2), (idem for 5 — {):

“(lal@),¢(Q)] = a< ()
Point 2) for 7,41 can then be deduced from point 2) for 7,: if for
example A € 7, with A < a the induction hypothesis shows:

“(lal@), x(N)] = A< )
Thus
“([a(@),2(A), c(Q)] = A<a <)
But (Ja 4 («))*, so
(A, (O] = A <)

point 3): The sign of P at each point A of 7, is already strongly evident
from the coding a la Thom of A. Tt remains to see that the sign of Q) € P,
at a new point (as ¢ in 1)) is strongly evident from its coding & la Thom.
From 2) we have:

“(lala), p(8), Q)] = a<C<p)
The induction hypothesis (3) shows that the sign of  in « and 7 is strongly
evident from ,(«) and (7).
Again by theorem 10 (5) and transitivity,

“([ola), 5(8), (O] = Q(O)70)" with 7€ {<,>}

8The statements concerning P{¥(.) are trivial since P(? is a constant, we
give them here essentially for the rereading of this proof when the coeftfi-
cients of P will depend on parameters.
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But
"(Ja, B [ale), s(B)])

so we obtain

Q) = QEO)70)" with 7€ {<, >}

point 4): Let us denote by » ,(X) the coding a la Thom for a minimal open
interval of 7, 41. It is obtained from y (X), ,(X) by replacing sign conditions
@x(X) =0 and @,(X) = 0 by the suitable strict sign conditions. Applying
theorem 10 (2) we obtain:

() A Q) x W (X)] = A< X < p)”

If now @ is an arbitrary polynomial in Pp41 we argue as in 3) for the
sign of () in ¢ and we obtain the strong evidence for the sign of Q(X) under
the hypothesis » ,(X) Q. E. D.

To finish the proof of theorem 23, we can recopy (using lemma 24), with
the usual cautions, all that we have done in the case of a real closed field.
The disjunction of cases will be sound because of (2). The sign evaluation
for a polynomial at a point of the tableau will be replaced by the strong
evidence of the sign for this polynomial etc . .. Q. E. D.

5) Effective real Nullstellensanz and variants

When one has shown the “strong implication” version of the axioms
and of the deduction rules in the formal theory of real closed fields with
elements of K as constants, 1t 1s natural to wish to translate in form of
strong implication every statement provable in this formal theory.

So to speak, the hardest part has been done with the validation of
“proof by cases”, the transitivity of strong implications and the authoriza-
tion to add a root to a polynomial on an interval where it changes sign.
In fact, as we have no “strong implication” version for statements with too
many quantifier alternations, this is not completely straightforward.

The proof of the Nullstellensatz consists therefore of verifying that the
algorithm for deciding a purely universal statement in the formal theory of
real closed fields doesn’t make use of logical arguments using statements
with too many quantifier alternations.

Proposition 25 (parametrized Hormander tableau). Let K be an ordered
field, subfield of a real closed field R. Let L = [Q1,Q2, ..., Q%] a list of
polynomials of K[Uy,Us, ..., U,][X]. One can construct a finite family F
of polynomials in K[Uy,Us,...,Uy] such that, for all uy,us, ..., u, in K,
if we set Pi(X) = Qs(u1,ua, ..., un; X), the complete sign tableau for L =
[Py, Pa, ..., Px] is computable from the signs of the S(uy,ua, ..., u,) for
SeF.
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Proof: The constants in the Hormander algorithm (cf. proposition 22)
are all obtained as rational fractions in the coefficients of polynomials of
L. Otherwise, the computation of the family P 1s “uniform” except that a
remainder computation, e.g. of Rem(P, @), depends on the degree of ). As
the @) coeflicients are rational fractions in the coefficients of polynomials of
L, the degree of ), for a given specialization uy, us, ..., u, of Uy, Us, ... Uy,
depends on the vanishing of some polynomials in the coefficients of poly-
nomials of L. Thus we include in the family F all the polynomials which
appear 1n the numerator or the denominator of a coeflicient of any polyno-

mial of a family P, for all the possible families P. Q. E. D.

Theorem 26 (parametrized Hormander tableau, strong implications and
potential existence). Let K be an ordered field, subfield of a real closed field
R. Let L =[Q1,Q2,...,Q%] a list of polynomials of K[U1,Us, ..., U,][X].
One constructs the finite family F of polynomials in K[U1,Us, ..., U,] as
in proposition 25. Let (Uy,Us, ..., Uy, X) be a gse system on polynomials
in the list L. Let " = (og)ser in {—1,0,+1}7.

One denotes by x(Uy,Us, ..., Uy) the gsc system

[S(Ul,Ug,...,Un) = 0g; SET]

Assume that there exist wuy,us,...,u, € R satisfying v(ui,us, ... uy,).
Then:
either

Vug,us, .o un € R (g(ur, us, .. uy) = Je € R (ug,us, ..., up, )
and then

(s(Uy,Us,...,Uy) = 3X (U, Us,...,Up, X))* (read in K)
or

Yug, ug, .. tun, @ € R(s (v, ua, ... upn) and (up, ua, ... U, 2))

— 1=0
and then
*([E(Ul,Ug,...,Un),(Ul,UQ,...,Un,X)} = 1=0)" (in K).

Proof: The sign conditions 5 prescribe the degrees of the polynomials in
the family (closed under remainder and derivation) generated by L, and
also prescribe the Hormander tableau of the family. We can then repeat
with the usual cautions the reasonings in the proof of theorem 23, and we
obtain theorem 23 “with parameters”, 1.e. theorem 26. Q. E. D.

The real effective Nullstellensatz 1s now easy.
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Theorem 27 (Effective real Nullstellensatz, Positivestellensatz and Nicht-
negativestellensatz). Let K be an ordered field, subfield of a real closed field
R. Let (U, Us,...,Up) be a gsc system for a finite family of polynomials
in K[Uy,Us,...,U,]. This system s tmpossible in R if and only if it is
strongly incompatible in K.

In more formal terms:

If Vuy, ua, ... up € R (w1, ua, ... uy) is absurd, then:

(U, Usy.. ., Uy) = 1=0)" (inK }.

If
*((Ul,Ug, - ,Un) — 1= 0)* (zn K ),
then the gsc (uy, ua, ..., uy) are timpossible to realize in any ordered exten-
ston of K.

Proof: The “converse” part is evident. For the “forward” part, one argues
by induction on the number of variables. For n = 1, this 1s theorem 23.
Let us go from n to n+ 1. Let us call X the (n 4+ l)St variable. In order to
construct the strong implication, one argues case by case, according to the
signs of the polynomials in the family F and one uses theorem 26.Q. E. D.

One has also immediately:

Theorem 28 (uniformly primitive recursive real Nullstellensatz and vari-
ants). Let K be an ordered field, subfield of a real closed field R. Let
(U, Usz,...,Uy) be a gse system for a finite family of polynomials in
K[U1,Us, ..., Uy]. Let (¢i)ier be the finite family of coefficients of poly-
nomials in . Suppose that the structure of ordered field of Q((c;)ier is
given by an oracle thalt answers to the question: “ whal s the sign of
P((ci)ier)?”, where the input is the polynomial P € [(Cy)ier]. There exists
a uniformly primitwe recursive algorithm that says wether s impossible
in R and constructs, in the case of a positive answer, a strong implication

(= 1=0)" (inK).

Remark 8: 1t would be easy to prove, by induction on the number of vari-
ables, an improvement of theorem 27, that should state: existence in R
implies potential existence read in K, and vice versa. In fact, the Null-
stellensatz having been proved, one can deduce immediately the following
interpretation for potential existence under conditions: Let | be a ¢gse sys-
tem on polynomials of K[X] = K[X, Xs,..., X,], and 5 a gsc system on
polynomials of K[ X, T1,T5,...,T,] = K[X,T]. Then one has

"(U(X) = AT (X, T))"  (read in K)

if and only 1if
Vee R"(1(x) = Jte R™a(x, t))
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Remark 9: The same methods, simplified, could be applied in field theory
(the only sign conditions are = 0 and # 0 ). One can thus obtain a direct
constructive proof for the Hilbert Nullstellensatz, with a uniformly primi-
tive recursive algorithm, (for the discrete case), without having to develop
the constructive noetherian theory.
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