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Introduction

Deciphering a computational content for idealistic objects and non-

constructive principles in classical mathematics can be understood

as the search for constructive semantics hidden in abstract recipes.

We will try to compare by examples such possible constructive se-

mantics.
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Example 1: prime ideals

in (classical) commutative algebra

Let A be a commutative ring, a an ideal, S a MCS (multiplicatively
closed subset) and assume that a ∩ S = ∅.

Krull Theorem. There exists a field K and a ring homorphism
ϕ : A→ K such that ϕ(a) = 0 and ϕ(S) ⊆ K×

The kernel p of ϕ is called a prime ideal of A.

The quotient ring A/p is an integral domain B and one can take
K = Frac(B).

The set Sp = A \ p is a MCS and the localised ring C = S−1
p A is

a local ring. One can take for K the residue field of C (which is
isomorphic to Frac(B)).

3



Example 1: prime ideals in (classical) commutative algebra (2)

Krull Theorem, refinement.
The intersection of all possible p in Krull Theorem is equal to

Sat(a, S) = {x ∈ A | ∃s ∈ S and n ∈ N such that sxn ∈ a }

We have also a concrete description for the intersection of all Sp’s

Using Krull Theorem in classical mathematics.

1. In order to prove that a∩S is inhabited, show that the conclusion
of Krull Theorem is absurd.

2. In order to prove that some x is in Sat(a, S) show that for every
ring homomorphism ϕ from A to any field K, one has ϕ(x) = 0

3. . . . (local global principles)
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Example 1: prime ideals in (classical) commutative algebra (3)

Constructive semantics via first order logic

Consider the first order theory built from the hypotheses of Krull
theorem.

I.e., the theory Tfields(A, a, S) of fields, adding as constants all ele-
ments a ∈ A, and as axioms

• the positive diagram of A

• a = 0 for a ∈ a

• s is invertible for s ∈ S

Using Krull Theorem and classical mathematics when analysing first
order logic you know that the following concrete result is true:

if Tfields(A, a, S) is inconsistent, then a ∩ S is inhabited
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Example 1: prime ideals in (classical) commutative algebra (4)

Constructive semantics via first order logic (2)

Examining in a detailed way the classical proofs (they use TEM,

Choice and Gödel’s completeness theorem, which have no construc-

tive interpretation, but also some concrete computations) involved

in this result, you see that the concrete result can be obtained in a

direct way by considering the computations appearing in the classical

proof.

So Krull Theorem appears as an “abus de pouvoir” allowing classi-

cal mathematicians to deduce abstract existence theorems via only

one nonconstructive principle: Gödel’s completeness theorem (much

weaker than TEM)
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Example 1: prime ideals in (classical) commutative algebra (5)

Constructive semantics via first order logic (3)

Krull refinement Theorem has the following constructive content:

form a proof of x = 0 for an x ∈ A in the formal theory Tfields(A, a, S),

on can find an s ∈ S and an n ∈ N such that sxn ∈ a.

Here again the abstract Krull refinement Theorem is nothing but

a translation of the concrete result through an “abus de pouvoir”

using Gödel’s completeness theorem.
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Example 1: prime ideals in (classical) commutative algebra (6)

Constructive semantics via dynamical algebraic structures

It is convenient, in order to be understood more widely, to recon-

sider the previous constructive semantics in a language more directly

accessible to all mathematicians.

This is rather easy any time you can see the first order theory you

consider as a geometric theory.

Then it is known that all proofs of sufficiently elementary results can

be managed without logic in a purely computational way.
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Dynamical semantics

It is often possible to understand “too abstract objects in classical

mathematics” (too abstract means that TEM and Choice are too

much used) as “nonstatic constructive objects, dynamical ones”

Let us see on the blackboard how this works when deciphering clas-

sical local-global principles.
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Zariski spectrum and dynamical semantics

The 3 natural topology of Spec(A) correspond to 3 dynamical se-

mantics (and three first order theories)

Considering the ring as a dynamical local ring.

Considering the ring as a dynamical integral ring.

Considering the ring as a dynamical field.
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Example 2: the splitting field

of a separable polynomial

Let K be a field and f ∈ K[T ] a separable polynomial of degree n
(this means that ∃u, v ∈ K[T ], uf + v ∂f∂T = 1).

Theorem.

1. There exists a splitting field for f , i.e., an over field L ⊇ K and
x1, . . . , xn ∈ L such that xi − xj ∈ L× if i 6= j and

(a) in L[T ] we have f(T ) =
∏n
i=1(T − xi)

(b) L = K[x1, . . . , xn], i.e., any element of L can be written as
Q(x1, . . . , xn) for some Q ∈ K[X1, . . . , Xn]. Moreover L is a
finite dimensional K-vector space (the notation for the di-
mension is [L : K])

2. If L′ is another splitting field for f over K, there exists an iso-
morphism ϕ : L→ L′ as K-algebras.
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Example 2: the splitting field of a separable polynomial (2)

The proof in classical mathematics.

• Let g1 be an irreducible factor of f , consider

K1 = K[x1] = K[X1]/ 〈g1(X1)〉

We have [K1 : K] = deg(g1).

• Let f1(T ) = f(T )/(T −x1) ∈ K1[T ]. Let g2 be an irreducible factor

of f1, consider

K2 = K1[x2] = K[X1, X2]/ 〈g1(X1), h2(X1, X2)〉

where h2(x1, X2) = g2(X2). We have [K2 : K] = deg(g1) deg(g2).

• And so on . . .
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Example 2: the splitting field of a separable polynomial (3)

Semantics à la Richman.

There is a possible description of classical mathematics as

“constructive mathematics when allowing TEM (and often Choice)”

(see Fred Richman).

Analysing the use of TEM in the above classical proof leads to the

constructive notion of “separably factorial discrete fields”.

Discrete fields: fields with a zero test. They satisfy the axiom “every

element is zero or invertible”.

Separably factorial fields: fields where separable polynomials do have

a factorisation in product of irreducible factors.
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Example 2: the splitting field of a separable polynomial (4)

Semantics à la Richman (2).

With these extra hypotheses, the classical theory becomes construc-

tive, but we need a fine constructive theorem:

Theorem. If K is a separably factorial discrete field, then so is any

extension K[X]/ 〈g(X)〉 where g is separable and irreducible.

Note that this theorem is trivially true in classical mathematics since

all fields are discrete and separably factorial when using TEM.

So we have found and shown hidden TEM hypotheses and an hidden

fine theorem corresponding to the classical proof.
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Example 2: the splitting field of a separable polynomial (5)

Semantics via Model Theory.

Existence of the splitting field

Uniqueness of the splitting field
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Example 2: the splitting field of a separable polynomial (6)

An intriguing example

What about the splitting field of T2−a, a 6= 0 (in characteristic 6= 2)

16



Example 2: the splitting field of a separable polynomial (7)

The splitting field as dynamical algebraic structure

You start with a discrete field. It is possible to compute in a secure
way inside the splitting field of f if you accept that it is not a usual
static object, but a dynamical one.

At the beginning your field is represented by the splitting algebra
of f .

Moreover you have a candidate for the Galois group, that is Sn.

Any time you find an element contradicting the axiom of fields, you
are able to immediately, improve your knowledge of the splitting field,
in considering a good quotient of your previous “splitting field”.

This works for all theorems of the so called Galois theory of f
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Example 3: Classical Galois Theory

1. (Galois group) Let us denote Gal(L/K) the group of K-automor-

phisms of L (such an automorphism ψ is characterised by the

permutation σ it induces over x1, . . . , xn, so Gal(L/K) can be

viewed as a subgroup of Sn). Then |Gal(L/K)| = [L : K]
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Classical Galois Theory (2)

Galois correspondance

For a subgroup H of G = Gal(L/K) let us denote FixL(H), or LH

the sub-K-algebra of L defined as

LH = { y ∈ L | ∀ψ ∈ H, ψ(y) = y }
For a field M with K ⊆M ⊆ L tel us denote StpG(M) the subgroup
H of G defined as

H = {ψ ∈ G | ∀y ∈M, ψ(y) = y } .

2. FixL and StpG are decreasing one to one correspondances be-
tween

{subgroups of G} and {fields M s.t. K ⊆M ⊆ L}
with Stp ◦ Fix = Idsubgroups and Fix ◦ Stp = Idsubfields
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Classical Galois Theory (3)

Galois correspondance, continued

3. If LH = M, then L is a splitting field for f over M.
Moreover Gal(L/M) = H.

4. For ψ ∈ G, ψ(LH) = LψHψ
−1

.

5. LH = M is a splitting field for some polynomial g ∈ K[T ] if and
only if H is a normal subgroup of G.
In this case Gal(M/K) ' G/H.

6. In characteristic 0 the equation f(x) = 0 is solvable by extractions
of m-th roots if and only if G is solvable.
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Bases over K

7. (resolvent) For z ∈ L,

– let z1, . . . , zr be the orbit G.z,

– H = StabG(z) = StpG(K[z]) (so r · |H| = |G|)

– and Rz(T ) =
∏r
i=1(T − zi).

Then Rz(T ) is the minimal polynomial of z over K.

As a particular case StabG(z) = { Id } if and only if L = K[z]

(primitive elements).

8. (normal basis) There exists a basis of L as K-vector space made

of ψ(y)′s for some y in L and all ψ ∈ Gal(L/K).
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Dynamical semantics beyond first order logic

Maximal ideals.

Minimal prime ideals.
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Thank you
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