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p. 2 —————— Hilbert’s Program ————–

Since the work of Dedekind, and Hilbert, non effective methods have been more and more
used in algebra

Dedekind: abstract definition of ideals as a set of elements
Reasoning by contradiction: to prove the existence of an object, show instead that it is

absurd that this object does not exist
If we prove in commutative algebra the existence of an object satisfying a simple “concrete”

property, it is not clear if this proof gives a way to compute this object

p. 3 —————— Hilbert’s Program ————–

This was one issue raised during the debate between Hilbert and Brouwer
Hilbert’s program: if we prove using ideal methods a concrete statement, one can always

eliminate the use of these ideal elements and obtain a purely elementary proof
Ideal methods: use of prime ideals, maximal ideals, valuation rings, local-global principle,

non constructive reasoning, . . .
Hilbert: (abstract) existence = logical consistency

p. 4 —————— Hilbert’s Program ————–

Warning! Hilbert’s Program cannot work for all “concrete” statements.
E.g., the existence of a prime factorization for a polynomial in K[X], K a field.
This is related to the logical complexity of the assertion: any polynomial has an irreducible

factor.
This is a ∀ ∃ ∀ statement, and for this kind of statement, classical logic gives a radically

new interpretation. So a classical proof may not in principle hide a constructive proof of the
concrete result.



p. 5 —————— Hilbert’s Program ————–

Recent work in constructive mathematics shows that Hilbert’s program works for a large
part of abstract algebra providing a constructive explanation of some abstract methods used in
mathematics.

Furthermore this follows Hilbert’s idea of replacing an “infinite ideal object” by a syntactical
theory that describes it.

p. 6 —————— Hilbert’s Program ————–

Before the introduction of non effective methods, any proof of an existence statement could
be seen as an algorithm.

In logic, this is known as the Brouwer-Heyting-Kolmogorov interpretation.
Question: has the use of ideal/non effective arguments in mathematics some computational

relevance?

p. 7 —————— Hilbert’s Program ————–

Question: has the use of ideal/non effective arguments in mathematics some computational
relevance?

It has some connection with the idea of lazy computation.
We cannot compute completely an infinite object but we can use partial finite amount of

information about this object during a computation.
As a striking case, logical inconsistency is always obtained from a finite amount of informa-

tion.

p. 8 —————— Logical complexity ————–

If we take a basic book in abstract algebra such as Atiyah-Macdonald Introduction to Com-
mutative Algebra or Matsumura Commutative ring theory we discover that basic theorems are
not formulated in a first-order way because of the introduction of abstract notions. Such abstract
notions are

1. arbitrary ideals of the rings, that are defined as subsets, and thus not expressed in a
first-order way,

2. prime or maximal ideals, whose existence relies usually on Zorn’s lemma,

3. Noetherian hypotheses.

These notions have different levels of non effectivity.

p. 9 —————— Logical complexity ————–

To be Noetherian can be captured by a generalised inductive definition:
C. Jacobsson and C. Löfwall. Standard bases for general coefficient rings and a new con-

structive proof of Hilbert’s basis theorem. J. Symbolic Comput. 12 (1991), no. 3, 337–371,
But then we leave first-order logic.
The notion of prime ideals seems even more ineffective, the existence of prime ideals being

usually justified by the use of Zorn’s lemma.
Furthermore a notion such as “being nilpotent” cannot be expressed in a first-order way

since it involves an infinite countable disjunction.

p. 10 —————— Logical complexity ————–

G. Wraith points out the relevance of the notion of geometric formula for constructive algebra.
Intuitionistic algebra: some recent developments in topos theory. Proceedings of the Interna-

tional Congress of Mathematicians (Helsinki, 1978), pp. 331–337, Acad. Sci. Fennica, Helsinki,
1980.



One defines first the notion of positive formulae: a positive formula is one formula of
the language of rings built using positive atomic formula (equality between two terms) and the
connectives ∨,∧. Special cases are the empty disjunction which is the false formula ⊥, and the
empty conjunction which is the true formula >.

We allow also existential quantification and infinite disjunction indexed over natural numbers,
or over the elements of the ring.

p. 11 —————— Logical complexity ————–

A geometric formula is an implication between two positive formulae.
A coherent formula is a formula which is both geometric and first-order.
A geometric theory is a theory whose axioms are geometric.
A coherent theory is a theory whose axioms are coherent.
A dynamical proof (in a geometric theory) is a logic-free proof. Axioms are seen as

inference rules. Only atomic formulae appear. One replaces the logical machinery by a purely
computational one, inside a tree. Opening branches at a node means applying a rule with a
disjunction in the conclusion.

p. 12 —————— Logical complexity ————–

Notice that, as special cases, any positive formula is geometric, and the negation of a positive
formula is geometric.

As a special case of coherent formula, we have the notion of Horn formula, which is an
implication C → A where C is a conjunction of atomic formulae, and A an atomic formula.
Horn theories correspond to the notion of atomic systems in Prawitz. For instance, equational
theories are Horn theories.

D. Prawitz. Ideas and results in proof theory. Proceedings of the Second Scandinavian Logic
Symposium, pp. 235–307. Studies in Logic and the Foundations of Mathematics, Vol. 63,
North-Holland, Amsterdam, 1971.

p. 13 —————— Logical complexity ————–

The notion for a ∈ R to be nilpotent is not first-order but it can be expressed as a positive
formula: a is nilpotent if and only if an = 0 for some n ∈ N.

On the other hand, “to be reduced”, that is to have only 0 as a nilpotent element, can be
expressed by the following Horn formula

∀x. x2 = 0 → x = 0
Another typical example of notion expressed geometrically is the notion of flat module M

over a ring R.
It says that if we have a relation PX = 0 where P is a row vector with coefficient in R and

X a column vector with elements in M then we can find a rectangular matrix Q and a vector Y
such that QY = X and PQ = 0. Since we don’t say anything about the size of Q this statement
involves implicitely an infinite disjunction over natural numbers. Thus the notion of flat module
is not first-order but geometric.

p. 14 —————— Logical complexity ————–

As stressed by G. Wraith the importance of geometric formula comes from Barr’s theorem.
Theorem If a geometric sentence is deducible from a geometric theory in classical logic, with
the axiom of choice, then it is also deducible from it intuitionistically.

Furthermore in this case there is always a proof with a simple branching tree form: a
dynamical proof.

In general, this tree may be infinitely branching, but, if the theory is coherent, that is
geometric and first-order, then the proof is a finitely branching tree.

p. 15 —————— Elimination of “all primes” ————–



We will describe a general method in order to get a constructive proof when the (concrete)
conclusion is obtained in classical abstract algebra by a reasoning that says:
After localization at any prime ideal of the ring, the concrete result is clear.
So by a particular kind of “local-global principle”, the result is true.

You see that prime ideals are only here to make the proof easier.
Also: not “all primes” are really needed, only a generic one.

p. 16 —————— Elimination of a generic prime ————–

General recipe: 1) Consider a formalization where the concrete context is described (no
prime).

2) Add a predicate Z(x) with the intended meaning x ∈ P where P is a generic prime.
Axioms are:

` Z(0), ` ¬Z(1), Z(x), Z(y) ` Z(x + y), Z(x) ` Z(xy),
Z(xy) ` Z(x) ∨ Z(y).
3) Prove that the new theory is conservative over the first one (this proof is hidden in the

classical proof of the corresponding local-global principle).
4) Read the classical proof in the second theory.

p. 17 —————— Elimination of a generic prime ————–

This general recipe has been used in order to obtain concrete proofs of

• Nullstellensatz (algebraically closed fields as ideal objects above a field)

• Positivstellensatz (real closed fields as ideal objects above a real field)

• “Valued”-stellensatz (algebraically closed valued fields as ideal objects above a valued field)

Coste M., Lombardi H., Roy M.F.
“Dynamical method in algebra: Effective Nullstellensätze”
A.P.A.L. 155 (2001)

p. 18 —————— Elimination of a generic prime ————–

This dynamical method can be seen as lazy evaluation.
In general the dynamical method can be explained through purely algebraic arguments trans-

lating (and hiding) the logical machinery.
In the next slides we see an example with Quillen’s solution of Serre’s problem.

p. 19 —————— Serre’s Problem ————–

Theorem: (Quillen-Suslin) Any finitely generated projective module on a polynomial ring
(over a field) is free

Theorem: (Quillen-Suslin, concrete version) Any idempotent matrix on a polynomial ring
is similar to a canonical projection matrix

Remark that in the theory of fields, if you are able to bound the degrees in the solution, this
is a scheme of ∀ ∃ statements. It has a good logical form, a constructive deciphering is a priori
feasible.

Generalization (by Maroscia, and Brewer & Costa) to the case of a polynomial ring over a
Prüfer ring of Krull dimension ≤ 1.

p. 20 —————— Serre’s Problem ————–

The proofs of Quillen and Brewer & Costa has been understood constructively (H. Lombardi,
C. Quitté, I. Yengui), by an analysis of some local-global principles.

These works give new algorithms, which do not rely on computation of Gröbner’s basis, for
solving Serre’s problem.
H. Lombardi, C. Quitté
Constructions cachées en algèbre abstraite (2) Le principe local-global, in:



Commutative ring theory and applications. Eds: Fontana M., Kabbaj S.-E., Wiegand S. LNPAM
vol 231. M. Dekker. (2002) 461–476.
H. Lombardi, C. Quitté, I. Yengui
Hidden constructions in abstract algebra (6) The theorem of Maroscia, Brewer and Costa.
(2005). Preprint.

p. 21 —————— Serre’s Problem, Quillen’s patching ————–

Example of constructive rereading of a local-global principle.
Theorem Let P be a finitely presented module over R[X].
(Quillen’s patching, original form) P is extended from R if and only if after localisation at

any prime ideal P, PP is extended from RP.
(Quillen’s patching, constructive form) Consider S1, . . . , Sn comaximal multiplicative subsets

of R. Then P is extended from R if and only if after localisation at each Si, PSi is extended
from RSi.

p. 22 —————— Serre’s Problem, Quillen’s patching ————–

Lemma Let P be a projective module over R[X], R a Prüfer domain with Krull dimension
≤ 1. Then P is extended.

Original proof: After localization at any prime P, R becomes a valuation domain with
Krull dimension ≤ 1. In this case we give a proof showing that V −1RP[X] is a Bezout domain
(here V is the monoid of monic polynomials). As a consequence, V −1PP is free. By Horrocks
theorem, PP is itself free, thus extended from RP. So, by Quillen’s abstract patching, P is
extended.

Constructive rereading: Reread the previous proof as a proof saying that, after localization
at comaximal multiplicative subsets Si (these Si are constructed dynamically during the proof
from the idempotent matrix F defining P ), the module V −1PSi is free. By Horrocks theorem,
PSi is itself free, thus extended from RSi . So, by Quillen’s concrete patching, P is extended.

p. 23 —————— Elimination of “several primes” ————–

In the next slides we face the problem of a constructive interpretation for theorems that use
“several primes” in the hypothesis.

E.g., the hypothesis says: assume the ring has Krull dimension ≤ d and the conclusion has
a concrete form.

This kind of hypothesis involves not only a generic prime, but a generic chain of primes.
To understand if a concrete meaning of the hypothesis is possible we need a constructive

interpretation of Zariski spectrum.

p. 24 —————— Zariski spectrum ————–

Fundamental object in abstract algebra, usually defined as the set of prime ideals of a ring
R with the basic opens

D(a) = {p | a /∈ p}.

However, even if the ring R is given concretely (i.e., we are able to make basic computations
in it) it may be difficult to show effectively the existence of prime.

Often, what matters is not one particular prime ideal, but the collection of all prime ideals.

p. 25 —————— Zariski spectrum ————–

Zariski spectrum is best seen as a point-free space
A. Joyal (1972) definition of the Zariski spectrum
A support on R is a map D : R → L in a distributive lattice L satisfying the conditions

D(0) = 0 D(1) = 1 D(ab) = D(a) ∧D(b) D(a + b) ≤ D(a) ∨D(b)

The Zariski spectrum can then be defined as the free support on R



p. 26 —————— Zariski spectrum ————–

This definition is purely algebraic (no need of Zorn’s Lemma)
Theorem: D(a) ≤ D(b1)∨· · ·∨D(bn) holds iff a is in the radical ideal generated by b1, . . . , bn.
This is also known as the formal version of the Nullstellensatz.
The proof is direct: one shows that the lattice of finitely generated radical ideals is the free

support.
D(u): finite piece of information about a prime ideal.

p. 27 —————— Gauss-Joyal ————–

Interesting supports, distinct from the Zariski support, are to be analysed.
Proposition: If D : R → L is a support then so is

DX :


R[X] −→ L

a0X
k + · · ·+ ak 7−→ D(a0, . . . , ak) ∈ Zar R

p. 28 —————— Krull dimension of a ring ————–

The Krull dimension of a ring is defined to be the maximal length of chain of prime ideals.
This definition seems hopelessly non effective.
Following the pioneering work of Joyal and L. Español, one can give a purely algebraic

definition of the Krull dimension of a ring.
As a test case, we have analysed in this way a paper of R. Heitmann “Generating non-

Noetherian modules efficiently” Michigan Math. J. 31 (1984), 167-180, which contains non
effective proofs of basic results in commutative algebra.

p. 29 —————— Krull dimension of a ring ————–

Definition: We say that a1, . . . , an and b1, . . . , bn are complementary iff
1 = D(a1, b1), D(a1b1) ≤ D(a2, b2), . . . , D(anbn) = 0.
For n = 1 this means that D(a1) is the complement of D(b1).
Definition: R, D is of dimension < n iff any n-ary sequence has a complementary sequence.
Definition: Kdim R < n iff R,D is of dimension < n for the free support D.

p. 30 —————— Krull dimension of a ring ————–

Notice that this definition is first-order (in the multi-sorted language of rings and lattices).
It states the condition in term of the elements of the ring (that are “concrete”) and not in

term of prime ideals.

p. 31 —————— Nullstellensatz ————–

We get the following (new) Nullstellensatz.
Theorem: Kdim(R) < n iff for any a1, . . . , an there exist k1, . . . , kn and u1, . . . , un such that

ak1
1 (ak2

2 (. . . akn
n (1− anun) · · · − a2u2)− a1u1) = 0.

Using this characterization, one can give a simple (constructive) proof that the dimension of
K[X1, . . . , Xm] is m (K a field). This follows directly from the fact that m + 1 polynomials on
m variables are algebraically dependent.

p. 32 —————— Kronecker’s Theorem ————–

Theorem: If R,D is of dimension < n then for any u0, u1, . . . , un there exist w1, . . . , wn

such that D(u0, . . . , un) = D(w1, . . . , wn).
This is a (non Noetherian) generalisation of Kronecker’s Theorem.
Since it is formulated as a first-order schema the proof cannot be complicated a priori.



The proof can be seen as a general algorithm which computes w1, . . . , wn from u0, u1, . . . , un.

p. 33 —————— Kronecker’s Theorem ————–

Constructive proof:
Take v1, . . . , vn a complementary sequence for u1, . . . , un.
Define w1 = u1 + u0v1, . . . , wn = un + u0vn.
This concrete proof, which gives an explicit algorithm, is extracted from an abstract proof in

the paper of Heitmann.
The abstract proof, which seems unfeasible (use of prime ideals, topological arguments on

the Zariski spectrum) contains implicitely a clever and simple algorithm (computation of the
polynomials v1, v2, . . . , vn).

p. 34 —————— Forster-Swan’s and Serre’s Splitting-Off Theorem ———
—–

T. Coquand. Sur un théorème de Kronecker concernant les variétés algébriques.
C.R.Acad.Sci., Paris, Ser I, 338 (2004), Pages 291-294

T. Coquand, H. Lombardi, C. Quitté. Generating non-Noetherian modules constructively.
Manuscripta Mathematica, 115 (2004), Pages 513-520

T. Coquand, H. Lombardi, C. Quitté. Dimension de Heitmann des treillis distributifs et des
anneaux commutatifs. Publications mathématiques de Besançon (2006), 51 pages.

Heitmann’s paper contains also non-Noetherian versions of Forster-Swan’s Theorem and
Serre splitting-off Theorem (1958)

p. 35 —————— Forster-Swan’s and Serre’s Splitting-Off Theorem ———
—–

Theorem: (Serre, 1958) If ∆n(M) = 1 and R,D is of dimension < n and M is a square
idempotent matrix then there exists an unimodular combination of the column vectors of M .

Forster’s Theorem can be deduced as a corollary of a generalization of the previous theorem.
Theorem: Let M an arbitrary matrix. If ∆n(M) = 1 and R,D is of dimension < n then

there exists an unimodular combination of the column vectors of M .
Since it is formulated as a first-order schema the proof cannot be complicated a priori. For

a given n and given size of the matrix, the constructive proof can be interpreted as an algorithm
which produces the unimodular combination.

p. 36 —————— Elimination of maximal primes ————–

From a logical point of view, eliminating a (generic) maximal prime from an abstract rea-
soning seems much more difficult than eliminating a (generic) prime.

Reasoning with a generic prime in order to prove some concrete thing is something like:
in order to prove that a ring (which is obtained from the hypotheses after some computations)
is trivial, show that it does’nt contain any prime ideal.

From a logical point of view: if you are able to prove 1 = 0 after you added a predicate and
axioms for a generic prime, then you are able to prove 1 = 0 without using this facility.

This conservativity theorem is the constructive content of the “construction à la Zorn” of a
prime ideal in a nontrivial ring.

p. 37 —————— Elimination of maximal primes ————–

The case of a generic maximal ideal is different.
Reasoning with a generic maximal prime in order to prove some concrete thing is something

like:
in order to prove that a ring is trivial, show that it does’nt contain any maximal ideal.

This cannot be captured by an argument using only first order logic.

p. 38 —————— Elimination of maximal primes ————–



The minimal models of the first order theory “the ring R, plus predicate and axioms for a
maximal ideal” are not:
(an homomorphic image of) R with a maximal ideal, but
(an homomorphic image of) the localization of R at a prime ideal.

In order to capture the notion of maximal ideal you have to use an infinite disjunction (a
disjunction over all elements of the ring).

x ∈ M ∨
∨

y∈R
1− xy ∈ M

p. 39 —————— Serre’s Problem (again) ————–

In fact, the proof of Suslin for Serre’s Problem, which uses a maximal ideal in a generic way,
can also be interpreted constructively.

I. Yengui
Making the use of maximal ideals constructive. (2004) preprint.

p. 40 —————— Elimination of maximal primes ————–

When you reread dynamically a proof saying
“after localisation at a prime ideal the ring becomes trivial”,

you construct a tree by using the disjunctions

x ∈ P ∨ x /∈ P

At the leaves of the tree you get comaximal monoids Si with 1 = 0 in each RSi .
But now you have to reread dynamically a proof saying

“after quotient by a maximal ideal the ring becomes trivial”.
The tree is no more a finite tree, it contains infinite disjunctions.

p. 41 —————— Elimination of maximal primes ————–

Idea: when rereading dynamically the proof follow systematically the branch xi ∈ M any
time you find a disjunction x ∈ M ∨ x /∈ M in the proof.

Once you get 1 = 0 in the quotient, this means 1 ∈ 〈x1, . . . , xk〉, so this leaf has the good
answer and moreover, at the node 〈x1, . . . , xk−1〉 ⊆ M you know a concrete a ∈ R such that
1− axk ∈ 〈x1, . . . , xk−1〉.

So you can follow the proof.
If the proof given for a generic maximal ideal is sufficiently “uniform” you know a bound

for the depth of the (infinite branching) tree. So your “finite branching dynamic evaluation” is
finite: you get an algorithm.

p. 42 —————— Elimination of maximal primes ————–

NB: within classical mathematics, using König’s lemma, you know that the finite branching
dynamic evaluation is finite.

So it is not surprising that the deciphering works: in each case we are able to find a con-
structive proof for the case of a generic maximal ideal.

But this can be seen rather as an experimental fact.
The methods always works, even we have not a constructive theorem saying that the method

always works: Barr’s theorem (page 3) is proven only inside classical mathematics.

p. 43 —————— Elimination of minimal primes ————–

Reasoning with a generic minimal prime in order to prove some concrete thing is something
like:
in order to prove that a ring is trivial, show that it does’nt contain any minimal prime ideal.

This cannot be captured by an argument using only first order logic. The corresponding
models are not:



(an homomorphic image of) the ring with a minimal ideal, but
(an homomorphic image of) the localization of the ring at a prime ideal.

p. 44 —————— Elimination of minimal primes ————–

In order to capture the notion of minimal prime ideal you have to use an infinite disjunction
(a disjunction over all elements of the ring).

If F is the corresponding maximal filter (complement of the minimal prime) here is the
infinite disjunction

x ∈ F ∨
∨

y∈F
xy nilpotent

p. 45 —————— Traverso-Swan theorem ————–

R is seminormal iff
If b2 = c3 there exists a such that b = a3 and c = a2

If R is reduced we have
Theorem: (Swan 1980) The canonical map Pic(R[X]) → Pic(R) is an isomorphism if R is

seminormal
This is a schema of first-order theorems

p. 46 —————— Traverso-Swan Theorem ————–

This Theorem has a concrete interpretation: given polynomials fi, gi (1 ≤ i, j ≤ n) with
Σfigi = 1, f1(0) = g1(0) = 1 and fi(0) = gi(0) = 0 for i > 1 let S the ring generated by the
coefficients of fi and gj

Then the coeffcients of fi and gj are in the seminormal closure of the subring R generated
by the coefficients of the matrix (figj)

This means that we have a chain of elements q1, . . . , qk ∈ S with q2
i+1, q3

i+1 in R[q1, . . . , qi]
and S = R[q1, . . . , qk]

Problem: compute this chain

p. 47 —————— Traverso-Swan Theorem ————–

An algorithm can be extracted from the abstract proof of Traverso-Swan, which uses a
minimal prime ideal in a generic way

Th. Coquand On seminormality, Journal of Algebra, to appear
H. Lombardi Elimination of minimal primes. Seminormal rings

http://www.lombardi.fr/publis/LectSlides3.pdf

p. 48 —————— A new approach to constructive mathematics ————–

New: the non-effective arguments contain interesting computational ideas
This is suggested by Hilbert’s program: using non-effective methods we can get simple and

elegant proofs of concrete results
Computer algebra: dynamical methods (system D5) allow to do computations in the alge-

braic closure of a discrete field, despite the fact that this algebraic closure may not exist (without
any further hypothesis of the field)

p. 49 —————— A new approach to constructive mathematics ————–

Avoid complete factorization: “point-free” statements (statements not in term of prime ideals
but in term of basic open for Zariski topology)

Try to get first-order, or even equational statements
Avoid Noetherian hypotheses which are not yet completely understood from a constructive

point of view

p. 50 —————— References (Forster and Serre’s theorem) ————–
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