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Poincaré on Cantorism

With most of us these prejudices have been dissipated, but it has come to pass that we have
encountered certain paradoxes, certain apparent contradictions that would have delighted Zeno
the Eleatic and the school of Megara. And then each must seek the remedy.
For my part, I think, and I am not the only one, that the important thing is never to introduce
entities not completely definable in a finite number of words.
Whatever be the cure adopted, we may promise ourselves the joy of the doctor called in to follow
a beautiful pathologic case.
Poincaré in The future of mathematics; 1908
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Hilbert’s program

Hilbert’s program was an attempt to save Cantorian mathematics through the use of formal-
ism.
From this point of view, too abstract objects (with no clear semantics) are replaced by their
formal descriptions. Their hypothetical existence is replaced by the non-contradiction of their
formal theory.
However, Hilbert’s program in its original finitist form was ruined by the incompleteness theo-
rems of Godel.
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Henri Poincaré’s program

As for me, I would propose that we be guided by the following rules:

1. Never consider any objects but those capable of being defined in a finite number of words;

2. Never lose sight of the fact that every proposition concerning infinity must be the trans-
lation, the precise statement of propositions concerning the finite;

3. Avoid nonpredicative classifications and definitions.

Henri Poincaré, in La logique de l’infini (Revue de Métaphysique et de Morale 1909). See also
Dernières pensées, Flammarion.
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Bishop’s Constructive Analysis

Poincaré’s program “Never lose sight of the fact that every proposition concerning infinity must
be the translation, the precise statement of propositions concerning the finite” is even more
ambitious than Hilbert’s program.
Bishop’s book (1967) Foundations of Constructive Analysis is a kind of realization of
the Poincaré’s program.
But also a realization of Hilbert’s program, when one replaces finitist requirements by less
stringent requirements, constructive ones.
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1. Structure of finitely generated abelian groups

See the slides at : http://hlombardi.free.fr/publis/Nis-LectSlides1.pdf
Basic references for constructive algebra
[MRR] A Course in Constructive Algebra
Mines R., Richman F., Ruitenburg W. (1985) Springer
[ACMC] Algèbre Commutative, Méthodes Constructives
Lombardi H., Quitté C. (2011) Calvage&Mounet.
http://hlombardi.free.fr/publis//LivresBrochures.html
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Summary

• Structure of finitely generated abelian groups (classical mathematics)

• Smith diagonalization and consequences.

• Finitely presented abelian groups.

• Solutions of linear systems over a commutative ring. Coherence.

• Nœtherianity versus coherence.

• Principal Ideal Domains
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Structure theorem for finitely generated abelian groups

We analyse the constructive content of a famous structure theorem.

Theorem 1. A finitely generated abelian group is the direct sum

• of a free group Zk (possibly k = 0)

• and of a torsion group Z/a1Z ⊕ · · · ⊕ Z/arZ
with all ai > 1 and ai divides ai+1 for 1 6 i < r (possibly r = 0).

We shall see that this theorem has no constructive proof, and we shall examine its constructive
versions.
In fact we are interested by a more precise theorem.
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Structure theorem for finitely generated abelian groups

Theorem 2. (Existence of a good basis, 1, classical mathematics).
Let G be a subgroup of (Zn,+).

1. There exist a Z-basis (e1, . . . , en) of Zn, an integer r (0 6 r 6 n), and integers a1, . . . , ar >
1 such that:

• ai divides ai+1 for 1 6 i < r

• (a1e1, . . . , arer) is a Z-basis of G.

2. The subgroup G̃ = Ze1 ⊕ · · · ⊕ Zer of Zn depends uniquely on G: it is equal to
{x | ∃k > 0, kx ∈ G }.

3. Zn/G ' Zn−r ⊕ G̃/G with G̃/G ' Z/a1Z ⊕ · · · ⊕ Z/arZ .

4. The list [a1, . . . , ar] is uniquely determined, | G̃ : G | = a1 · · · ar.

http://hlombardi.free.fr/publis/Nis-LectSlides1.pdf
http://hlombardi.free.fr/publis//LivresBrochures.html
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Smith diagonalization of matrices over Z
Theorem 3. (Smith reduction over Z)
Let A be a matrix ∈ Zn×m. It admits a Smith reduction: we can construct C ∈ GLm(Z) and
L ∈ GLn(Z) such that

LAC = L A C = D =
D1 0

0 0

with D1 = Diag(a1, . . . , ak), 0 6 k 6 min(m,n), ai > 0 for 1 6 i 6 k, and ai divides ai+1 for
1 6 i 6 k − 1. Moreover, the ai’s are uniquely determined by A. The product a1 · · · ak is equal
to the gcd of all k × k minors of A.
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Consequences of Smith diagonalization

We are able to solve linear systems AX = B over Z, and to give equations and congruences
characterizing good B’s.
The good basis theorem applies constructively for subgroups M ⊆ Zn which are finitely gener-
ated.
The structure theorem for finitely generated groups has a constructive proof when the group is
finitely presented.
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Consequences of Smith diagonalization

The kernel of any matrix is free (with an explicit basis) and it admits a free summand.
Duality: we are able to find a finite generator system for the solutions of a system of linear
equations and congruences.
A subgroup M ⊆ Zn which is a finite intersection of finitely generated subgroups is itself finitely
generated.
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Solutions of linear systems, coherence, strong discreteness

The problem of computing kernels of matrices, and generators for intersections of finitely many
finitely generated submodules of a free module is a basic one. This leads to the notion of
coherent rings.

Definition 4.

1. A ring A is coherent if every linear form An → A has a finitely generated kernel.

2. An A-module M is coherent if every linear map An →M has a finitely generated kernel.

3. A ring A is strongly discrete if for every linear form α : An → A and every x ∈ A, either
x ∈ Imα or x /∈ Imα.

4. An A-module M is strongly discrete if for every linear map α : An → M and every
x ∈M , either x ∈ Imα or x /∈ Imα.
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Characterizations of coherence

Coherence is what is needed to control homogeneous linear systems.

Theorem 5. A ring A is coherent if and only if the kernel of any linear map ϕ : An → Am

is finitely generated.
An A-module M is coherent if and only if the kernel of any linear map ϕ : An →Mm is finitely
generated.

If you add strong discreteness you control all linear systems: you are able to decide if a given
right hand side B in linear system AX = B has a solution.
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Characterizations of coherence

Theorem 6. A ring A is coherent if and only if

1. The intersection of two finitely generated ideals is always a finitely generated ideal.

2. The annihilator of any element x ∈ A, i.e., { y ∈ A | yx = 0 } is a finitely generated ideal.

Theorem 7. An A-module is coherent if and only if

1. The intersection of two finitely generated submodules is always a finitely generated sub-
module.

2. The annihilator of any element x ∈M , i.e., { y ∈ A | yx = 0 } is a finitely generated ideal.

——————————————————— page 16 ——————————————————–

Coherence. From rings to finitely presented modules

Theorem 8.

1. If A is a coherent ring, then so is any finitely presented A-module.

2. If A is a strongly discrete coherent ring, then so is any finitely presented A-module.
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Nœtherianity

The good basis theorem of classical mathematics can be seen as:

• Each finitely generated subgroup of Zn admits a good basis (clearly constructive from
Smith’s diagonalization).

• Each subgroup of Zn is finitely generated: Nœtherian property, problematic from a con-
structive point of view.

——————————————————— page 18 ——————————————————–

Nœtherianity

In order to analise constructively the Nœtherian property let us consider the five following
variants for an A-module M .

N1: Each submodule of M is finitely generated.

N2: Each nondecreasing chain of submodules
M1 ⊆M2 ⊆ · · · ⊆Mn ⊆ · · ·

is eventually constant.

N3: Each nondecreasing chain of finitely generated submodules is eventually constant.

N4: In each nondecreasing chain of finitely generated submodules there are two equal consecu-
tive terms.

N5: A strictly increasing chain of finitely generated submodules is impossible.
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Nœtherianity

Each implication N1 ⇒ N2 ⇒ N3 ⇒ N4 ⇒ N5 does have an algorithmic content.
But the reverse implications are problematic.
A solution? Choose good definitions and don’t try to prove unprovable theorems!
A good definition of Noetherianity is N4: we say that the ring is RS-Noetherian
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Coherence and Nœtherianity

In classical mathematics Noetherianity implies coherence. But strong “counterexamples” show
that this implication has no computationnal content.
From a computational point of view, coherence is much more usefull than Noetherianity.
Nevertheless Noetherianity is interesting for obtaining proofs of termination for certain algo-
rithms
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Nœther Basis Theorem

Here Noetherian means RS-Noetherian.

Proposition 9. If A is a Noetherian coherent ring, then so is any finitely presented A-module.

Theorem 10. (Hilbert, Nœther, Richman, Seidenberg)

1. If A is a Noetherian coherent ring, then so is A[X].

2. If A is a strongly discrete Noetherian coherent ring, then so is A[X].

Corollary 11.

1. If A is a Noetherian coherent ring, then so is any finitely presented A-algebra.

2. If A is a strongly discrete Noetherian coherent ring, then so is any finitely presented A-
algebra.
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Principal ideal domains

• A is a discrete domain: every element is regular or equal to 0.
Equivalently, ∀x ∈ A AnnA(x) = {0} or 〈1〉.

• A is Bezout: each finitely generated ideal is principal.
Equivalently (for a discrete domain) ∀a, b, ∃u, v, s, t, g such that[

u v
s t

]
·
[
a
b

]
=

[
g
0

]
,

∣∣∣∣ u v
s t

∣∣∣∣ = 1

• A is RS-Nœtherian: each ascending chain of finitely generated ideals has two consecutive
terms equal.

Remark: We don’t need an explicit divisibility relation, but without this condition the last
item is a bit disturbing, and the algoritms are more complicated.
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Structure theorem: finitely generated modules over a PID

Theorem 12. (Existence of a good basis). Let A be a nontrivial PID and M a finitely generated
submodule of An.

1. There exist an A-basis (e1, . . . , en) of An, an integer r (0 6 r 6 n), and regular elements
a1, . . . , ar ∈ A such that:

• ai divides ai+1 (1 6 i < r)

• (a1e1, . . . , arer) is an A-basis of M .

2. The submodule M̃ = Ae1 ⊕ · · · ⊕ Aer of An depends uniquely of M : it is equal to
{x | ∃a ∈ A, a regular, ax ∈M }.

3. An/M ' An−r ⊕ M̃/M , M̃/M ' A/a1A ⊕ · · · ⊕A/arA .

4. The list [a1A, . . . , arA] is uniquely determined.

NB: M and M̃ are free.



——————————————————— page 24 ——————————————————–

Smith diagonalization of matrices

Theorem 13. (Smith reduction over a PID A)
Let A be a matrix ∈ An×m. It admits a Smith reduction: we can construct C ∈ GLm(A) and
L ∈ GLn(A) such that

LAC = L A C = D =
D1 0

0 0

with D1 = Diag(a1, . . . , ak), 0 6 k 6 min(m,n), ai 6= 0 for 1 6 i 6 k, and ai divides ai+1 for
1 6 i 6 k − 1. Moreover, the 〈ai〉’s are uniquely determined by A.

In fact Smith diagonalization works for Bezout domains of Krull dimension 6 1 and PID do
have dimension 6 1.
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Smith diagonalization of matrices

In fact Smith diagonalization works for Bezout domains of Krull dimension 6 1 and PID do
have dimension 6 1.


