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Our problem

The coordinate ring of a smooth plane curve is a Dedekind domain.

We study the computational meaning of this theorem.
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1. Dedekind domains
(constructively)

Usual definitions of Dedekind domain are not well suited for an al-

gorithmic treatment.

For instance, if k is a field, even given explicitely, there is in general

no method to factorise polynomials in k[X].

So the definition as “a domain where finitely generated nonzero ideals

are decomposable in product of maximal ideals” is not satisfactory.
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Dedekind domains

Dedekind considered that the main divisibility property was the fol-
lowing one :

For all x1, . . . , xn ∈ A there exist γ1, . . . , γn ∈ Frac(A) such that∑
i γixi = 1 and all γixj are in A.

See : Avigad J. Methodology and metaphysics in the development
of Dedekind’s theory of ideals. In : José Ferreirós and Jeremy Gray,
editors, The Architecture of Modern Mathematics, Oxford University
Press, (2006), 159–186.

This is a concrete formulation of arithmeticity for a domain. A ring
is called arithmetical when f.g. ideals are locally principal, i.e.,
for any f.g. ideal a = 〈x1, . . . , xn〉 there exist comaximal elements
e1, . . . , en s.t. in each A[1/ei], a = 〈xi〉. In the Dedekind formulation
ei = γixi.
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Dedekind domains

Also a ring is arithmetical iff its lattice of ideals is distributive.

An arithmetical domain is called a Prüfer domain.

In particular a Prüfer domain is a coherent ring :

i.e. every f.g. ideal is finitely presented.

Or also : the kernel of a matrix is always finitely generated.

This is a very important property for computations.

From a constructive point of view, we define a Dedekind domain as

a strongly discrete Noetherian Prüfer domain.

5



Dedekind domains

We define a Prüfer ring as an arithmetical reduced ring.

A ring is a pp-ring if for all x there is an idempotent e s.t. Ann(x) =

Ann(e). So in A/〈e〉, x is regular, and in A/〈1− e〉, x = 0.

A ring is coherent and Prüfer iff it is an arithmetical pp-ring.

We think that coherent Prüfer rings are the best generalisation of

Prüfer domains in presence of zerodivisors.

In rings with no factorisation algorithms, zerodivisors are unavoidable

when passing to quotients.
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Dedekind domains

For a general constructive exposition of arithmetical, Prüfer and De-

dekind rings see :

Lionel Ducos, Henri Lombardi, Claude Quitté, and Maimouna Salou.

Théorie algorithmique des anneaux arithmétiques, de Prüfer et de

Dedekind. J. Algebra, 281, (2004) 604–650.

H. Lombardi, C. Quitté. Algèbre Commutative, Méthodes Construc-

tives. (chapters 3, 8 and 12) To appear.

Available at http://hlombardi.free.fr/publis/LivresBrochures.html.
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2. Smooth algebraic plane curve

Let k be a discrete field and f(x, y) an absolutely irreducible polyno-

mial. Let R = k[x, y]/〈f〉 the coordinate ring of the curve f(x, y) = 0.

We assume that the curve is smooth. I.e., there is no singularity.

By the Nullstellensatz this means that 1 ∈ 〈f, fx, fy〉.

Theorem 1. R is a Dedekind domain.

We are interested in the computational content of this theorem.

More precisely we want to construct an algorithm showing that R is

a Prüfer domain.
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Smooth algebraic plane curve

We are to give the following slightly more general result.

Theorem 2. Let k be a discrete field, f(x, y) ∈ k[x, y] an arbitrary
polynomial and R = k[x, y]/〈f〉. Assume that 1 ∈ 〈f, fx, fy〉. Then R
is a coherent Prüfer ring.

In classical mathematics it follows that R is a finite product of De-
dekind domains.

Theorem 2 is an immediate consequence of the following general
theorem.

Theorem 3. Let k be a discrete field, f(x, y) ∈ k[x, y] an arbitrary
polynomial and R = k[x, y]/〈f〉. Then Rfy is a coherent Prüfer ring.
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3. A classical proof

In the case where k is algebraically closed, f irreducible and fy 6= 0.

Let A = Rfy = (k[x, y]/〈f〉)fy

Clearly A is a Noetherian domain. So it is Dedekind iff it is Prüfer.

One proves that A is a Prüfer domain by showing that any localisa-

tion Rp is a valuation ring, where p is an arbitrary maximal ideal not

containing fy.
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A classical proof

Since k is algebraically closed, a maximal ideal p of R is on the form

p = 〈x− a, y − b〉 where a, b are in k such that f(a, b) = 0.

The fact that fy is not in p means that we have fy(a, b) 6= 0. So fy

is invertible in Rp.

We simply follow the usual proof that Rp is a discrete valuation ring

with x− a as uniformising parameter :

we show that any nonzero element in R can be written w · (x− a)m

with w invertible in Rp and m ∈ N (n is the “valuation” of g at p).
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A classical proof

We write in k[x, y]

f − f(a, b) = (x− a)u− (y − b)v

with u and v in k[x, y]. We have then v(a, b) = −fy(a, b) 6= 0.
So, in Rp

(y − b) = (x− a)uv−1

Similarly, for an arbitrary element g in k[x, y] nonzero in R we can
write

g = g(a, b) + (x− a)p− (y − b)q

with p, q ∈ k[x, y] and hence in Rp

g = g(a, b) + t r1

with r1 = pv − qu and the parameter t = (x− a)v−1 ∈ pRp.

12



A classical proof

Doing the same operation with r1 instead of g we get similarly in Rp

g = g(x, y) = g(a, b) + t r1(a, b) + t2 r2(x, y)

It is natural to write r0 = g. We let g0 = g(a, b), g1 = r1(a, b) ∈ k.

In general, we have an equality in Rp

g = g0 + t g1 + · · ·+ tn−1 gn−1 + tn rn

with gk = rk(a, b) ∈ k.

A constructive argument using the nonzero resultant d(x) = Resy(f, g)

shows that some gm is nonzero.

The first m such that gm 6= 0 is the valuation of g at p.
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4. Towards a constructive rewriting

of the classical proof

The preceeding classical proof uses strong abstract arguments : non-

zero primes of R are written 〈x−a, y−b〉 with (a, b) on the curve, and

a domain is Prüfer iff all localisations at maximal ideals are valuation

rings.

Besides these strong arguments (the second one is nonconstructive),

the computations in the proof are very simple. The computation does

depend on (a, b) (the valuation of g at 〈x−a, y−b〉 depends on (a, b)),

but intuitively it is always the same computation.

So there must be simple analog computations not using the fact that

k is algebraically closed and showing that Rfy is arithmetical without

using nonconstructive steps.
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Towards a constructive rewriting of the classical proof

First we show a uniform rewriting of the computation giving the

valuation at p = 〈x− a, y − b〉 (a generalisation of Hasse-Schmidt

derivatives).

Second the idea underlying the constructive deciphering of the clas-

sical proof is to replace “all points of the curve with coordinates in

an algebraic closure of k” by the generic zero of f , which is (a, b) in

k[a, b]/〈f(a, b)〉.
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5. A generalisation of Hasse-Schmidt

derivatives

The preceeding computations are in fact uniform if we modify the
context, in a straightforward generalisation.

Let B be a commutative ring, and a, b two elements of B. We write
δ0 : B[x, y] → B the evaluation δ0(h) = h(a, b). In a shorter way :
h0 = h(a, b).

If f is a polynomial in B[x, y] we can write in B[x, y]

f − f0 = (x− a)u− (y − b)v

We let R = B[x, y]/〈f − f0〉 and A = Rfy (B is simply an arbitrary

ring and A replaces Rp).
We have δ0(v) = −δ0(fy), so δ0(v) is invertible in A.

16



A generalisation of Hasse-Schmidt derivatives

For an element g of B[x, y] we can write

g − δ0(g) = (x− a)p− (y − b)q

and hence define ∆(g) = pv − qu.

In A, with t = (x− a)v−1 we get

g = g0 + t∆(g)

It is easy to see that ∆ is a well defined B-linear map R → R. Doing

for ∆(g) the samething we get

g = g0 + t g1 + t2 ∆(∆(g))

with g1 = ∆(g)(a, b) = (δ0 ◦∆)(g).
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A generalisation of Hasse-Schmidt derivatives

We let δn = δ0 ◦∆n, rn = ∆n(g) and gn = δn(g) = rn(a, b). We get

the following general “Taylor expansion” for g in A near (a, b)

g = g0 + t g1 + · · ·+ tn−1 gn−1 + tn rn gi ∈ B, t ∈ A, g, rn ∈ R.

Considering two elements g, h of R one shows

∆n(gh) = g∆n(h) +
∑n

i=1
δn−i(h)∆i(g) (n > 0).

If we apply δ0 we get

δn(gh) =
∑

i+j=n
δi(g)δj(h)
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A generalisation of Hasse-Schmidt derivatives

We can consider the map

R → B[[t]], g 7→
∞∑

i=0

δi(g)t
i

and the equality δn(gh) =
∑

i+j=n δi(g)δj(h) shows that this is a map

of B-algebras.
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A generalisation of Hasse-Schmidt derivatives

Lemma 4. We have for any n ≥ 1

h∆n(g) = g∆n(h) in B[x, y]/〈f − f0〉
modulo δ0(g), . . . , δn−1(g), δ0(h), . . . , δn−1(h).

Lemma 5. If we have d in 〈f, g〉 ∩ B[x] which is primitive, i.e. d =∑n
i=0 uix

i with 1 ∈ 〈u0, . . . , un〉 in B then D(δ0(fy)) is covered by

D(δ0(f), δ0(g), . . . , δn(g)) in the Zariski spectrum of B.

Equivalently the Zariski spectrum of Bfy(a,b) is covered by

D(δ0(f), δ0(g), . . . , δn(g)),

i.e., 〈1〉 = 〈f0, g0, . . . , gn〉 in Bfy(a,b).
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6. Algorithmic solution of the problem

We consider the case where k is a discrete field and f is an arbitrary

polynomial in k[x, y].

As before we write R for the ring k[x, y] quotiented by f . We let A

be the localisation Rfy.

Lemma 6. Each divisor p of f in k[x, y] determines an idempotent

ep in A such that 〈p〉 = 〈ep〉 in A.

Moreover if f = pq we have eq = 1 − ep and Aep ' (k[x, y]/〈q〉)pqy,

which is a localisation of (k[x, y]/〈q〉)qy.
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Algorithmic solution of the problem

Example. Let f = y2(y + x + 1)(y + 2x + 1) = pq with

p = y(y + x + 1) and q = y(y + 2x + 1) = yr

Let g = (y + x + 1)(y + 2x + 1) . We obtain

A = (k[x, y]/〈f〉)fy ' (k[x, y]/〈g〉)gy

In (k[x, y]/〈q〉)qy, p is not regular and

(k[x, y]/〈q〉)pqy ' (k[x, y]/〈r〉)pry = (k[x, y]/〈r〉)p ' (k[x])x(2x+1)
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Algorithmic solution of the problem

Two consequences of Lemma 6 :

Proposition 7. A is a pp-ring.

Fact. in the problem of finding a covering of the Zariski spectrum of

A by elements D(w) such that on each localisation Aw we have that

g divides h or h divides g, we can as well suppose that the polynomials

g and f are relatively prime in k[x, y].
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Algorithmic solution of the problem

Lemma 8. (crucial lemma) Let g, h be two elements of k[x, y] such

that g and f are relatively prime in k[x, y]. We can find u0 = g, v0 =

h, u1, v1, . . . , um, vm in k[x, y] such that vig = uih for i = 0, . . . , n and

D(fy) is covered by D(u0), D(v0), . . . , D(um), D(vm) in the Zariski

spectrum of R.

We consider now a, b as new indeterminates and consider the ring

B = k[a, b] and fix a monomial ordering on B[x, y] = k[a, b, x, y].

We write

gi = δi(g), hi = δi(h) in B, ri = ∆i(g), si = ∆i(h) in B[x, y]
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Algorithmic solution of the problem

Since f and g are relatively prime in k[x, y] the intersection 〈f, g〉∩k[x]

is nonzero.

So we can apply Lemma 5 and there exists m such that D(fy(a, b))

is covered by D(f0, g0, . . . , gm) in B = k[a, b].

Replacing a and b by x and y, we see that D(fy) is covered by

D(g0(x, y), . . . , gm(x, y)) in R = k[x, y]/〈f〉
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Algorithmic solution of the problem

Let n ≥ 1. Let us write N(p) the normal form of an element p in

k[a, b, x, y] = B[x, y] w.r.t. a Gröbner basis of the ideal In generated

by

f0, g0, h0, . . . , gn−1, hn−1

Note that this ideal is defined on B.

Let pn = N(rn) = pn(a, b, x, y) and qn = N(sn) = qn(a, b, x, y) (n ≥ 1).

We let u0 = g, v0 = h and for n ∈ [1, m],

un = pn(x, y, x, y) and vn = qn(x, y, x, y)

We are done !
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Algorithmic solution of the problem

Theorem 9. The ring A = Rfy is a coherent Prüfer ring.

Corollary 10. If f is a polynomial in k[x, y] such that 1 = 〈f, fx, fy〉
then k[x, y]/〈f〉 is a coherent Prüfer ring.

We provide an implementation in Magma of the algorithm which is

obtained by following the constructive proof.
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Thank you

Thanks to the organizers
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