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Dedicated to the memory of Mario Raimondo

Abstract
Let K be an ordered field and R its real closure. A semipolynomial will be defined as a function
from Rn to R obtained by composition of polynomial functions and the absolute value. Every
semipolynomial can be defined as a straight-line program containing only instructions with the
following type: ”polynomial”, ”absolute value”, ”max” and ”min” and such a program will be
called a semipolynomial expression. It will be proved, using the ordinary Real Positivstellen-
satz, a general Real Positivstellensatz concerning the semipolynomial expressions. Using this
semipolynomial version for the Real Positivstellensatz we shall get as consequences a continuous

and rational solution for the 17th Hilbert problem, rational and continuous versions for several
cases in the Real Positivstellensatz and constructive proofs for several theorems concerning the
algebra over the real numbers.

I. Introduction.

This work can be considered as the natural continuation of [Lom1] and we assume that
the reader knows the results contained in such paper. With respect to [Lom1], [Lom2] and
[Lom3] this work contains an idea really original, to use in an explicit way the difference
between a function and the program computing such function. Working with polynomials
this difference is not really important but dealing with semipolynomial functions, those
obtained composing polynomials with the functions absolute value and/or max and min,
becomes crucial. In fact, there are at least three different ways to be, a semipolynomial φ,
null:
1-. the semipolynomial φ is the null function over any ordered extension of K, but in gen-

eral this is not easy to be determined (nevertheless for the polynomial case it is enough
to write in reduced form the formal polynomial defining the function considered),

2-. the semipolynomial φ is defined by a straight-line program such that for all the ”a
priori” possible cases concerning the instructions absolute value, max and min provides
an identically zero polynomial

3-. the semipolynomial φ is identically zero in a way that will be precised later.
The second way to be, a semipolynomial, null which is stronger than the first one and

the third one which is stronger than the second one, are applied only to the programs and
this will be the key which will allow us to formulate the Real Positivstellensatz for the
semipolynomials.

This Positivstellensatz is included in a general research program looking for similar
theorems for every first-order formal theory with explicit quantifier elimination. In this
setting a weak Nullstellensatz is a theorem saying that every incompatible system of equal-
ities is related with an algebraic identity making this incompatibility evident without using

1 Partially supported by CICyT PB 89/0379/C02/01 and Esprit/Bra 6846 (Posso).
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the existential axioms in the theory considered. Moreover a ”general” Nullstellensatz, in
this setting, must achieve the same objectives for every incompatible system of ”atomic
relations” in the theory. If, in the future, this general research program is acomplished we
shall have obtained that all the formal proofs of incompatibility between atomic relations
(which are universal theorems in the theory considered) can be transformed in an auto-
matic way into proofs without using the existential axioms of the theory and moreover
these proofs will be reduced to the construction of algebraic identities.

In our case the theory considered is the one concerning the real closed fields where we
shall introduce the symbols for the function absolute value, max and min. In this context,
it is not possible to reduce the equality between two terms, as in the ordinary theory for
real closed fields, to the equality of a polynomial to zero, it will be reduced to the equality
of a semipolynomial expression to zero.

The search of a Positivstellensatz in the semipolynomial case has been motivated
by the rational and continuous solution for the 17th Hilbert problem and has provided a
reduced solution (independent of the problem considered here) for this problem that can
be founded in [DGL]. As a by-product of the Positivstellensatz for the semipolynomials we
get a parameterized version for the the 17th Hilbert problem and for several instances of
Positivstellensatz. Namely the theorems we prove in sections IV and V, in reduced version,
are the following ones.

Theorem IV.1
The general polynomial fn,d of degree d in n variables can be written as a weighted sum
of squares of rational functions

fn,d(c,X) =
∑

j

pj(c)
(

qj(c,X)
k(c,X)

)2

(for all c ∈ Rm), where

• k(c,X) and the qj(c,X) are polynomials in the variables X whose coefficients are
0Q-semipolynomials in the coefficients c. Moreover, if c ∈ IFn,d, then k(c,X) vanishes
only on the zeros of fn,d(c,X), and

• each pj(c) is a 0Q-semipolynomial which is nonnegative on IFn,d. Moreover, under the
hypothesis c ∈ IFn,d, the nonnegativity of pj(c) is ‘clearly’ evident.

Theorem V.1
Let IH(c,X) be a system of generalized sign conditions on polynomials in K[c,X], where
the Xi’s are considered as variables and the cj ’s as parameters. If SIH is the semialgebraic
defined by

c ∈ SIH ⇐⇒ ∀x ∈ Rn IH(c,x) is incompatible

and SIH is locally closed then (Finiteness Theorem) there exist H1(c) and H2(c) K-
semipolynomials such that

c ∈ SIH ⇐⇒
[
H1(c) ≥ 0, H2(c) > 0

]

If c ∈ SIH then the incompatibility of IH(X) = IH(c,X) inside Rn is made obvious by an
algebraic identity with coefficients given by semipolynomials in c.
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This paper has been written with the point of view of a constructive mathematician.
Anyway it can be read as a paper in classical mathematics where all the proofs are effective,
in particular without using the Axiom of Choice, providing primitive recursive algorithms
(in case of discrete real closed fields, see [LR]) or uniformly primitive recursive (in case the
structure of coefficient field is given by an oracle giving the sign of any polynomial with
integer coefficients evaluated in the coefficients of the problem).

In the part devoted to the constructive algebra for the real numbers ”à la Cauchy”,
the proof of a theorem provides an uniformly primitive recursive algorithm, where the
uniformity is understood with respect to the oracles giving the rational approximation
desired for the real numbers ”à la Cauchy” appearing in the hypothesis of the problem.

A brief history for the Hilbert’s 17th Problem

Hilbert’s 17th Problem was introduced by D. Hilbert in 1901 (see [Hil]) and first solved,
in a more general version than the one posed by D. Hilbert, by E. Artin in 1927 (see [Art]).
Artin’s proof was strongly non-constructive (for example, use of Zorn’s Lemma). Several
attempts were made trying to get a constructive solution to Hilbert’s 17th Problem. G.
Kreisel in 1957 (see [Kre]) gave a sketch of a proof which was completed by D. E. Daykin
in 1961 (see [Day]). Independently, A. Robinson (see [Rob1] and [Rob2]) got a constructive
solution with (by definition total) general recursive bounds. These authors also expressed
the weights and coefficients of the rational functions as ZZ-piecewise-polynomial functions
of c. This kind of proofs work only for the case when the coefficient field has an explicit
sign test (which is not the case for IR). C. N. Delzell (see [Del2]) in 1980 solved the
problem partially for the case of IR. For other commentaries on constructivity of solutions
see [Del7], [Lom4] and [DGL].

Moreover, in [Del2] was proved that the coefficients of the solution (the pj(c) and
the coefficients of the qj(c,X) and k(c,X) in theorem IV.1) could be choosen as 0Q-
semialgebraic continuous functions of the parameters of the problem (the c). A natural
question arises in this point: can the coefficients of the solution be chosen as polynomials
in the parameters, c, of the problem?. The negative answer to this question when d ≥ 4
can be found in [Del1] and also in [Del5] or [Del6] where it is proved that it is impossible
to find even an analytically varying representation of the solution.

After all these negative answers, the remaining question is to ask if it is possible to
improve in some way the functions appearing in the solution to Hilbert’s 17th Problem.
The first (and possible the best one) answer to this question was announced in 1988
by C. N. Delzell (see [Del4] or [Del7]): the coefficients in the solution can be chosen as
0Q-semipolynomials. This answer provides also a rational solution because the coefficient
functions of the solution can be considered as functions from Kn to K while in the solution
introduced in [Del2] this was only possible with K a real closed field.

The authors re-discovered independently the same result in 1991 and this motivated a
joint paper, [DGL], concerning the Hilbert’s 17th Problem where the solution was derived
without using the semipolynomial Positivstellensatz. The proof announced by C. Delzell
in [Del4], whose details will appear in [Del7]. Such proof is derived from an abstract
Positivstellensatz for the real spectrum of a ring.
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II. Definitions.

Firstly we recall the definitions of strong incompatibility and the general form for the Real
Nullstellensatz in the polynomial case (see [Lom1] and [Lom3]). We consider an ordered
field K, and X denotes a list of variables X1, X2 . . . , Xn. We then denote by K[X] the
ring K[X1, X2, . . . , Xn]. If F is a finite subset of K[X], we let F ∗2 be the set of squares
of elements in F , M(F ) be the multiplicative monoid generated by F ∪ {1}. Cp(F ) is the
positive cone generated by F (the additive monoid generated by elements of type p ·P ·Q2

where p is positive in K, P is in M(F ), Q is in K[X]). Finally, let I(F ) be the ideal
generated by F .

Definition II.1
Consider 4 finite subsets of K[X] : F>, F≥, F=, F6=, containing polynomials for which we
want respectively the sign conditions > 0, ≥ 0, = 0, 6= 0: we say that F = [F>; F≥;F=; F6=]
is strongly incompatible in K if we have in K[X] an equality of the following type:

S + P + Z = 0 with S ∈M(F> ∪ F ∗26= ), P ∈ Cp(F≥ ∪ F>), Z ∈ I(F=)

It is clear that a strong incompatibility is a very strong form of incompatibility. In
particular, it implies it is impossible to give the indicated signs to the polynomials, in any
ordered extension of K. If one considers the real closure R of K, the previous impossibility
is testable by Hörmander’s algorithm, for example.

Notation II.2
We use the following notation for a strong incompatibility:

y[S1 > 0, . . . , Si > 0, P1 ≥ 0, . . . , Pj ≥ 0, Z1 = 0, . . . , Zk = 0, N1 6= 0, . . . , Nh 6= 0]
y

or, denoting by IH(X1, . . . , Xn) the system of generalized sign conditions considered:
yIH(X1, . . . , Xn)

y

Remark that we use the same notation as in [Lom3] instead of (as in [Lom1] or [Lom2])
?(IH(X1, . . . , Xn) =⇒ 1 = 0)?

The different variants of the real Positivstellensatz are consequences of the following
general theorem:

Theorem II.3
Let K be an ordered field and R a real closed extension of K. The three following facts,
concerning a generalized sign condition system on polynomials of K[X], are equivalent:

strong incompatibility in K
impossibility in R
impossibility in all the ordered extensions of K

An equivalent form of this Positivstellensatz was first proved in 1974 ([Ste]). Less
general variants were given by Krivine ([Kri]), Dubois ([Du]), Risler ([Ris]), Efroymson
([Efr]) and Prestel ([Pre]).
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Next we generalize the notion of strong incompatibility to the semipolinomial case.
Let K be an ordered discrete field and R its real closure.

A semipolynomial function with coefficients in K (a K-semipolynomial) from Rn to R
is a function obtained by a finite repetition of composition of polynomials with coeficients
in K and the function absolute value. A well-known proposition, not used here, assures
that the set of the K-semipolynomials agrees with the minimal max-min stable set of
functions containing polynomials with coefficients in K (see for example [Del3]).

It could be developped for the K-semipolynomials a theory similar to the one intro-
duced in [Lom1] which allows to obtain the constructive version for the Real Positivstellen-
satz. In fact we shall reduce our problem to the ordinary Real Positivstellensatz (theorem
II.3).

In order to obtain an explicit Positivstellensatz for the semipolynomials, we shall need
firstly a notion for algebraic identities concerning semipolynomials. As the semipolynomials
does not have canonical representation, this question is a bit tricky.

To solve this question we consider a new notion, the K-semipolynomial expression
(shortly a K-spe, or a spe if K is clear in the context). A K-spe F (X1, . . . , Xn) is a
straight-line program with the following structure:
• each instruction is an assignement zi ←− . . . with the indexes i ordered in an

increasing way (the last zi is F ),
• the instructions can have only the four following types

? zj ←− P (X1, . . . , Xn, zi1 , . . . , zik
) where P ∈ K[X1, . . . , Xn, zi1 , . . . , zik

] and
every ih is smaller than j,

? zj ←− |zi| with i < j,
? zj ←− max{zi1 , . . . , zik

} with every ih smaller than j,
? zj ←− min{zi1 , . . . , zik

} with every ih smaller than j.
It is clear that every K-semipolynomial can be obtained from a K-spe (we only need

to replace every Xi by xi and to execute the program). Moreover every K-spe can be
defined using only one of the three functions, absolute value, max or min.

A polynomial underlying a K-spe is, by definition, a polynomial in K[X1, . . . , Xn]
obtained when the straight-line program given by the K-spe considered is executed in the
following way:
• every instruction zj ←− |zi| is replaced by one of the two instructions zj ←− zi or

zj ←− −zi ,
• every instruction zj ←− max{zi1 , . . . , zik

} is replaced by one of the k instructions
zj ←− zih

,
• every instruction zj ←− min{zi1 , . . . , zik

} is replaced by one of the k instructions
zj ←− zih

.
For example, if our K-spe F contains d absolute value instructions (without max or

min instructions) then there are ”a priori” 2d polynomials underlying the K-spe F .
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Definition II.4
A K-semipolynomial expression F will be said formally null when all the polynomials
underlying F are null.

For example the K-spe
G2 − |G|2

is formally null but
G− | −G| and (1 + X2)− |1 + X2|

are not, which in some sense is disturbing.
A K-spe G will be said interior to another K-spe F if (modulo a renumbering of the

variables zi in G) the straight-line program for G can be obtained from the one for F by
deleting some instructions and if the straight-line program for G ends with an instruction
absolute value, min or max.

A K-spe H is said a polynomial inside the context of the K-spe F if H is a polynomial
in the variables Xi and in the K-spe interior to F . More precisely H must be written as
the straight-line program associated to F plus intructions of polynomial type (indeed only
one of such instructions would be sufficient). Remark that it is not forbidden to introduce
new variables, i.e. not appearing in the F ’s context.

In some sense, it is not worthly to compute with different K-spe outside of a common
context. For example if F := |X| and G := |X|, without common context, the K-spe
H := F −G will be computed by the following program

z1 ←− X, F ←− |z1|, z2 ←− X, G ←− |z2|, H ←− F −G

obtaining that H is not formally null. So, it is only in a common context that we can talk
about K-spe formally equal.

In a fixed context, we have the stronger notion for two K-spe to be identical, as such
K-spe defined by the same polynomials in the variables and in the K-spe interior to the
context1. In particular it is clear that the notion of K-spe identically null is stronger that
the one of K-spe formally null.

All what follows will be applied on K-spe which are polynomials inside the
context of a K-spe F fixed (we shall say, inside a fixed context).

Let IH be a system of generalized sign conditions on the K-spe Fi with 1 ≤ i ≤ t.
Next, we define in a recursive way which are the K-spe ”evidently = 0, ≥ 0 or > 0 under
the hypothesis IH”.

K-spe evidently null under the hypothesis IH:
The K-spe evidently null under the hypothesis IH are
• the K-spe equal to 0 in IH,

1 The context notion is not essential. Given F, G, H, . . . it is alway possible to compute a maximal

common context (maximal in the sense that it is defined by the maximun of the interior common K-spe)

for these K-spe, taking first in account the most interior K-spe to F, G, H, . . . (those obtained with

only one instruction absolute value, max or min) until the less interior. Anyway the context notion seems

to be useful to simplify the understanding of what follows and moreover it is well posed for a future

implementation of the algorithms in the proof.
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• the K-spe coming from polynomial instructions of the following type

zj ←−
k∑

h=1

zih
Ph(X1, . . . , Xn, zi1 , . . . , zik

)

where the zih
are yet known as evidently null under IH,

• the K-spe identical to another K-spe yet known as evidently null under IH.

K-spe evidently nonnegative under the hypothesis IH:
The K-spe evidently nonnegative under the hypothesis IH are
• the K-spe > 0 or ≥ 0 in IH,
• every K-spe zj obtained in the context by an absolute value instruction zj ←− |zi|,
• every K-spe of type zj − zi where zj is obtained in the context by a max instruction

zj ←− max{. . . , zi, . . .},
• every K-spe of type zi − zj where zj is obtained in the context by an min instruction

zj ←− min{. . . , zi, . . .},
• the square K-spe, i.e. the K-spe coming from an instruction zj ←− z2

i ,
• the polynomials with positive coefficients in K in some K-spe zj1 , . . . , zjk

yet known
as evidently ≥ 0 under IH,

• the K-spe identical to another K-spe yet known as evidently ≥ 0 under IH.

K-spe evidently positive under the hypothesis IH:
The K-spe evidently positive under the hypothesis IH are
• the K-spe > 0 in IH,
• the positive elements in K,
• the square of K-spe 6= 0 in IH,
• the products of K-spe yet known as evidently > 0 under IH,
• the K-spe identical to another K-spe yet known as evidently > 0 under IH.

Definition II.5
A system of generalized sign conditions IH is said strongly incompatible (in K and with
the context fixed) if there exists a K-spe formally null, obtained as the sum of a K-spe
evidently > 0, a K-spe evidently ≥ 0 and a K-spe evidently = 0 (under the hypothesis
IH).

We shall use, as in [Lom3], the notation
yIH(X1, . . . , Xn)

y . Remark here that if all
the K-spe considered are ”true” polynomials then we find the old notions and this allows
not to introduce new notations.

Using the notion of strong incompatibility, it is possible to develop the notions of
strong implication, the constructions of strong incompatibilities and potential existence as
in [Lom1] or [Lom2] and also the notions of dynamic implication and dynamic disyunction
as in [Lom3]. Anyway we shall not need these concepts because we shall derive the Real
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Positivstellensatz for the semipolynomials directly from the ordinary Real Positivstellen-
satz (theorem II.3).

III. The Real Positivstellensatz for the K-semipolynomial expres-
sions.

In this section, the K-semipolynomial expressions considered will be polynomials inside a
fixed context and they will be called K-spe. Also the strong incompatibilities will have
their coefficients in K and in the fixed context (which implies that the functions absolute
value, max and min can appear only as in the context).

Theorem III.1
Let K be a discrete ordered field and R a real closed field containing K. Let IH be a system
of generalized sign conditions defined on a finite family of K-semipolynomial expressions
in the variables X1, . . . , Xn (these K-semipolynomial expressions are polynomials inside a
fixed context). Then the system IH is incompatible in R if and only if the system IH is
strongly incompatible in K (for the fixed context). More precisely

If
yIH(X1, . . . , Xn)

y (in K) then the system IH is incompatible in any ordered
field extension of K.

If for every (x1, . . . , xn) ∈ Rn the system IH(x1, . . . , xn) is incompatible thenyIH(X1, . . . , Xn)
y (in K).

Proof:
Remark, firstly, that the incompatibility of the system IH in R can be determined using a
decision algorithm for the discrete real closed fields, performing only computations in K.

The first part in the statement of the theorem is trivial, it is enough to apply the
definition of strong incompatibility introduced in the previous section.

To prove the second part, we shall reduce our problem to the ordinary Real Positivstel-
lensatz. Firstly we introduce a formal variable zj for every variable zj in the context. So
our system IH can be rewritten as a system IH ′ containing only polynomials in the variables
Xi and zj .

Now we define a polynomial system of generalized sign conditions IHc associated to
the context in the following way:

• for every polynomial instruction zj ←− P (X1, . . . , Xn, zi1 , . . . , zik
) we introduce in

IHc the sign condition
zj − P (X1, . . . , Xn, zi1 , . . . , zik

) = 0

• for every absolute value instruction zj ←− |zi| we introduce in IHc the sign conditions
z2
j − z2

i = 0 zj ≥ 0

• for every max instruction zj ←− max{zi1 , . . . , zik
} we introduce in IHc the sign

conditions
(zj − zi1)(zj − zi2) . . . (zj − zik

) = 0, zj − zi1 ≥ 0, zj − zi2 ≥ 0, . . . , zj − zik
≥ 0

• for every min instruction zj ←− min{zi1 , . . . , zik
} we introduce in IHc the sign

conditions
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(zj − zi1)(zj − zi2) . . . (zj − zik
) = 0, zj − zi1 ≤ 0, zj − zi2 ≤ 0, . . . , zj − zik

≤ 0

The system [IH ′, IHc] is incompatible in R because first, the system IH is incompatible
in R and second, every solution of the system [IH ′, IHc] provides a solution for IH. As all
the elements involved in the system [IH ′, IHc] are polynomials, applying the ordinary Real
Positivstellensatz (see theorem II.3), we obtain a strong incompatibility

y[IH ′, IHc]
y (1)

Now if we replace, in the algebraic identity obtained, every variable zj by the corresponding
K-spe then:
• the ”positive” part in (1) does not contain any generalized sign condition from IHc

and provides a K-spe ”evidently positive” under the hypothesis IH,
• the ”nonnegative” part in (1) provides a K-spe ”evidently nonnegative” under the

hypothesis IH (it is enough to use the definitions),
• the ”null” part in (1) can be separated in two pieces

? the first one is null under the hypothesis IH ′ and provides a K-spe evidently null
under the hypothesis IH,

? the second one is null under the hypothesis IHc and provides a K-spe formally
null (in the fixed context), which can be deleted.

So, deleting the last piece in the ”null” part we obtain a K-spe which is equal to a K-spe
identically null minus a K-spe formally null and so formally null, as we wanted to show.

Remark III.2
The theorem III.1 shows that in particular a straight-line program, as ”G − |G|” with G
everywhere positive, defining a semipolynomial everywhere null, has always an algebraic
evidence for its nullity. It is a crucial point that in the definition of a strong incompatibility,
the global K-spe must be formally null, what is much stronger than ”everywhere null”.

Remark III.3
Strong versions for the polynomial Positivstellensatz and Nichtnegativstellensatz can be
found in [Lam] and can be derived easily from theorem II.3. In a similar manner we can
state the same result for the semipolynomial theorems. For example, assuming that we
have an implication:

∀x1, . . . , xn ∈ Rn (IH(x1, . . . , xn) =⇒ P (x1, . . . , xn) > 0)

or, what is the same, the incompatibility of the system:

IH(x1, . . . , xn), P (x1, . . . , xn) ≤ 0

Theorem III.1 gives a corresponding strong incompatibility where we can isolate the role
played by the polynomial P :

S + Q− PR + Z = 0
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with S evidently positive, Q and R evidently nonnegative and Z evidently null under the
hypothesis IH. If we multiply the left hand side of the last equality by 1 − P we get the
following formal equality:

P (S + R + Q) = (S + Q + RP 2) + Z(1− P )

or, what is the same:
P (S + Q1) = S + Q2 + Z1

with S evidently positive, Q1 and Q2 evidently nonnegative and Z1 evidently null under
the hypothesis IH. This is the form of Lam’s Positivstellensatz. The same trick works for
the Nichtnegativstellensatz.

IV. A new rational and continuous solution for the Hilbert’s 17th

problem.

Let fn,d(c,X) be the generic polynomial with degree d and n variables (c denotes the list
of coefficients c1, . . . , cm and X the list of variables X1, . . . , Xn). It is a standard fact in
Real Algebraic Geometry that the set

IFn,d = {c : ∀x ∈ Rn fn,d(c,x) ≥ 0}

is a closed 0Q-semialgebraic set. So, applying the Finiteness Theorem we have that IFn,d

can be described as a finite union of basic closed 0Q-semialgebraic sets. Looking carefully
at the proof of the Finiteness Theorem in [BCR] (or in other places) we can conclude
that such proof is explicit and rational (see [Sol] for a careful complexity analysis of this
theorem), which implies that it is possible to compute in a rational way a finite number of
polynomials Rn,d,i,j(c) in ZZ[c] such that

IFn,d =
k⋃

i=1

ni⋂

j=1

{c : Rn,d,i,j(c) ≥ 0}

This last equality allows us to describe the set IFn,d in the following way

IFn,d =
{
c :

[
max

i=1,...,k

{
min{Rn,d,i,j(c) : j = 1, . . . , ni}

}]
≥ 0

}

So, if for every i in {1, . . . , k} we define

Hn,d,i(c) = min
j=1,...,ni

{Rn,d,i,j(c)}

and
Hn,d(c) = max

i=1,...,k
{Hn,d,i(c)}

we have obtained the following description for the set IFn,d

IFn,d = {c : Hn,d(c) ≥ 0}
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where Hn,d(c) is a 0Q-semipolynomial.
We have shown the equivalence

c ∈ IFn,d ⇐⇒ Hn,d(c) ≥ 0 ⇐⇒ ∀x ∈ Rn fn,d(c,x) ≥ 0

with fn,d(c,X) a polynomial and Hn,d(c) a 0Q-semipolynomial. Let us consider now Hn,d

as a 0Q-spe defined by the straight-line program that translates the definitions of Hn,d,1, . . .,
Hn,d,k and Hn,d. So, we can apply the Real Positivstellensatz for the 0Q-semipolynomial
expressions in the context Hn,d to the implication

∀c ∈ Rm ∀x ∈ Rn
{
Hn,d(c) ≥ 0 =⇒ fn,d(c,x) ≥ 0

}

or, what is the same, to the incompatibility of the system of generalized sign conditions
Hn,d(c) ≥ 0, fn,d(c,X) < 0

Applying theorem III.1 to this system we obtain a strong incompatibility that can be
rewritten as the following formal equality

fn,d(c,x)g(c,x) = fn,d(c,x)2r + h(c,x) (2)

where h and g are 0Q-spe evidently nonnegative under the hypothesis Hn,d(c) ≥ 0.
Coming back again to the definitions it is easy to see that g and h are polynomials in

X whose coefficients are 0Q-spe in c. More precisely, g and h are sum of terms
pj(c)qj(c,X)2

where the qj(c,X) have the same type than g and h and the pj(c) are 0Q-spe evidently
nonnegative under the hypothesis Hn,d(c) ≥ 0 and with the context Hn,d(c). This allows
us to conclude that without loss of generality we can suppose that every pj(c) is a product
whose factors have the following type
• the 0Q-spe Hn,d(c),
• a 0Q-spe Hn,d(c)−Hn,d,i(c),
• a 0Q-spe Rn,d,i,j(c)−Hn,d,i(c),
• a positive rational or the square of a 0Q-spe in c.

If we multiply by fn,d(c,X) every member of the equality (2) we get

fn,d(c,X) =
fn,d(c,X)2g(c,X)

fn,d(c,X)2r + h(c,X)

and denoting by k(c,X) the denominator of such fraction we obtain finally

fn,d(c,X) =
fn,d(c,X)2g(c,X)k(c,X)

k(c,X)2
=

g1(c,X)
k(c,X)2

where g1 has the same type than g and h.
The proof of the following theorem is almost achieved.
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Theorem IV.1
The generic polynomial with degree d and n variables can be written as a sum of rational
functions

fn,d(c,X) =
∑

j

pj(c)
(

qj(c,X)
k(c,X)

)2

(?)

where

• the qj(c,X) and k(c,X) are polynomials in the variables X whose coefficients are
0Q-spe in the variables c. Moreover if c ∈ IFn,d then k(c,X) only vanishes on the zeros
of fn,d(c,X),

• each pj(c) is a product whose factors are Hn,d(c) or one of the 0Q-spe Hn,d(c)−Hn,d,i(c)
or one of the 0Q-spe Rn,d,i,j(c)−Hn,d,i(c) or a positive rational or the square of a 0Q-spe
in c. So, under the hypothesis Hn,d(c) ≥ 0 the positivity of pj(c) is ”clearly” evident,

• the equality

fn,d(c,X)k(c,X)2 −
∑

j

pj(c)qj(c,X)2 = 0

is specially evident in the following sense: the first member of the equality, as poly-
nomial in X, has as coefficients 0Q-spe in c which are formally null.

The equality (?) provides a rational and continuous solution for the Hilbert’s 17th problem
because
• all the coefficients (the pj(c) and the coeffcients of the qj(c,X) and k(c,X) consid-

ered as polynomials in X) appearing in the equality (?) are rational and continuous
functions in c, more precisely they are 0Q-spe in the variables c,

• every term in sum (?)

pj(c)
(

qj(c,X)
k(c,X)

)2

is a rational function which can be extended by continuity to a semialgebraic contin-
uous function in the semialgebraic closed set IFn,d ×Rn.

Proof:
The only statement still not proved is the one concerning the fact that every term in (?)
can be extended with continuity to a semialgebraic continuous function on IFn,d×Rn. For
that it is enough to exhibit a modulus of uniform continuity for

U(c,X) = pj(c)
(

qj(c,X)
k(c,X)

)2

on every bounded set B ⊂ IFn,d ×Rn.
So, if ε is a positive number then we can choose δ > 0 such that on B we have

‖(c,x)− (c′,x′)‖ < δ =⇒ |fn,d(c,x)− fn,d(c′,x′)| < ε

8

and we consider two different cases

12



• if fn,d(c,x) ≤ 3ε/8 then fn,d(c′,x′) ≤ ε/2 , what implies directly that

0 ≤ U(c,x) ≤ 3ε
8

0 ≤ U(c′,x′) ≤ ε
2



 =⇒ |U(c,x)− U(c′,x′)| < ε

• if fn,d(c,x) ≥ ε/4 then fn,d(c′,x′) ≥ ε/8 what implies

k(c,x) ≥
(

ε

8

)2r

k(c′,x′) ≥
(

ε

8

)2r

allowing to find δ′ ≤ δ such that

‖(c,x)− (c′,x′)‖ < δ′ =⇒ |U(c,x)− U(c′,x′)| < ε

since the minoration of the denominator.

V. Rational and continuous solution for another cases of the clas-
sical Real Positivstellensatz.

The solution for the Hilbert’s 17th problem can be seen as a particular case of the Real
Positivstellensatz and for this case we have just proved, in the previous section, the exis-
tence of a solution depending on the parameters of the problem in a semipolynomial way.
So what we shall do, is to generalize this result for another cases.

Let IH(c,X) be a system of generalized sign conditions on polynomials in K[c,X]
where the Xi’s are considered as variables and the cj ’s as parameters. We denote by SIH

the semialgebraic set defined by

SIH = {c : ∀x ∈ Rn IH(c,x) is incompatible}

If SIH is locally closed (i.e. intersection of a closed and an open semialgebraic set)
then, applying the Finiteness Theorem (see [BCR]) and the strategy followed in the section
IV when dealing with the set IFn,d, it is possible to compute two K-spe H1(c) and H2(c)
verifying

c ∈ SIH ⇐⇒
[
H1(c) ≥ 0, H2(c) > 0

]
⇐⇒ ∀x ∈ Rn IH(c,x) is incompatible

Applying now the Real Positivstellensatz for the K-spe in the context defined by H1

and H2 to the incompatibility of the system of generalized sign conditions
[
H1(c) ≥ 0, H2(c) > 0, IH(c,X)

]

one gets a rational and continuous version for the strong incompatibility of the system
IH(c,X) when the parameters c vary inside SIH .

13



In the same way that our rational and continuous solution for the Hilbert’s 17th

problem showed in section IV, improves Delzell’s result (see [Del2]), what is obtained in
this section improves Scowcroft’s results (see [Scow]) in four aspects
a-. the semialgebraic set SIH needs not to be for us, necessarily closed,
b-. the coefficients of our solution are K-semipolynomials in the parameters c for the

hypothesis,
c-. the algebraic identity obtained, seen as polynomial in X, has a structure specially

simple, its coefficents are K-spe in c formally null,
d-. the positivity or strict positivity of the coefficients (which must verify such condition)

in the solution is clearly evident under the hypothesis H1(c) ≥ 0 and H2(c) > 0.
The next theorem summarizes the results obtained in this section and provides a

rational and continuous solution for some cases of Real Positivstellensatz.

Theorem V.1
Let IH(c,X) be a system of generalized sign conditions on polynomials in K[c,X], where
the Xi’s are considered as variables and the cj ’s as parameters. If SIH is the semialgebraic
defined by

c ∈ SIH ⇐⇒ ∀x ∈ Rn IH(c,x) is incompatible

and SIH is locally closed then (Finiteness Theorem) there exist H1(c) and H2(c) K-
semipolynomial expressions such that

c ∈ SIH ⇐⇒
[
H1(c) ≥ 0, H2(c) > 0

]

If c ∈ SIH then the incompatibility of IH(X) = IH(c,X) inside Rn is made obvious by
a strong incompatibility yIH(X)

y
with type fixed (independent of c) and with coefficients given by K-semipolynomial ex-
pressions in c (which are polynomials inside the context defined by H1(c) and H2(c)).
Moreover

• the algebraic identity obtained, seen as polynomial in X, has a structure specially
simple, more precisely, every coefficient of such identity as polynomial in X is a K-
semipolynomial expression in c formally null (in particular, this K-semipolynomial
expression defines the zero function of c without supposing H1(c) ≥ 0 and H2(c) > 0),

• every coefficient p(c) in the algebraic identity which must be nonnegative (resp. posi-
tive) is given by a K-semipolynomial expression evidently nonnegative (resp. positive)
under the hypothesis H1(c) ≥ 0 and H2(c) > 0.

Remark V.2
It has been obtained a form of the Real Positivstellensatz where the parameters in a strong
incompatibility depends in a rational and continuous way of the parameters in the system
considered. The restriction concerning the character locally closed of the semialgebraic
SIH gives a particular significance to the choice of the parameterization. One possibility ”a
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priori”, is to take as distinct parameters all the coefficients appearing inside the hypothesis,
but this is not an obligation. Moreover, since the semialgebraic set SIH can be easily
described as the projection of a closed semialgebraic set in higher dimension, we always
can be placed in the conditions where it is possible to apply the theorem V.1, merely
increasing the number of parameters. Anyway this naive idea does not solve (in a magic
way) all the problems provided by the constructive algebra with real numbers given ”à la
Cauchy”.

Example V.3: Polynomial positive on a compact and basic semialgebraic set.
Let K be a bounded, closed and basic semialgebraic set in Rn defined by the system

IHK(X) : q1(X) ≥ 0, . . . , qs(X) ≥ 0

with every qi(X) a polynomial in K[X].
Let fn,d(c,X) be the generic polynomial with degree d and n variables as in section

IV. The semialgebraic set VK defined by

VK = {c : ∀x ∈ K fn,d(c,x) > 0}

is open. In fact if the poynomial fn,d is, for a value c0, positive on K then there is a
positive lower bound σ of fn,d(c0,X) on K what implies that σ/2 is a lower bound for
fn,d(c,X) on K with c enough close to c0.

So we are in the conditions of theorem III.1, the system of generalized sign conditions

IH(c,X) : q1(X) ≥ 0, . . . , qs(X) ≥ 0, −fn,d(c,X) ≥ 0

is incompatible in X if and only if c ∈ VK and, as VK is an open semialgebraic set,
there exists a K-semipolynomial ν(c) in c verifying that the incompatibility of the system
IH(c,X) in X is equivalent to ν(c) > 0.

Applying the theorem III.1 to the incompatibility of IH(c,X) with ν(c) > 0 we obtain
an algebraic identity with the following structure

fn,d(c,X)
( ∑

i∈I1

pi(c)
( ∏

j∈Ji

qj(X)
)
ri(c,X)2

)
= ν(c)2p +

∑

i∈I2

si(c)
( ∏

j∈Ji

qj(X)
)
ti(c,X)2

This algebraic identity is an identity between polynomials in X where the coefficients are
K-spe formally null (if we equate to zero). All the expressions there appearing are poly-
nomials inside the context defined by ν(c) and the si(c)’s and pi(c)’s are K-spe evidently
nonnegative under the hypothesis ν(c) > 0.

The structure of the last equality provides us the evidence that, for c fixed verifying
ν(c) > 0, there exists a positive lower bound for the polynomial fn,d(c,X) on the bounded
and closed semialgebraic set K

∀x ∈ K fn,d(c,x) ≥ ν(c)2p

∑

i∈I1

pi(c)
( ∏

j∈Ji

qj(x)
)
ri(c,x)2

≥ ν(c)2p

m
> 0
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where m > 0 is a lower bound of the denominator on K (it is worthly to remark that if
ν(c) > 0 then the denominator is positive on K).

Example V.4: Polynomial positive on a regular family of compact and basic semialgebraic
sets.
In the last example when dealing with the question of a polynomial positive on a compact
we have parametrized the polynomial, but we can also parameterize the compact. So we
will introduce the notion of regular family of compact and basic semialgebraic sets.

Let W be a locally closed semialgebraic set defined by two K-semipolynomials w1(u)
and w2(u)

W = {u ∈ Rt : w1(u) ≥ 0, w2(u) > 0}
and we shall consider for every u ∈ W a non empty compact semialgebraic set Ku defined
by

Ku = {x ∈ Rn : q1(u,x) ≥ 0, . . . , qs(u,x) ≥ 0, ‖x‖ ≤ p(u)}
where the qi(u,X)’s are polynomials in X with coefficients K-semipolynomials in u and
p(u) is a polynomial in u. This family of compacts is said regular to mean that the compact
set Ku depends continuously on u (for the Haussdorf distance between two compacts).

Let V be the semialgebraic set defined by

V = {(c,u) : u ∈ W and ∀x ∈ Ku fn,d(c,x) > 0}

and (c0,u0) ∈ V . The function fn,d(c0,x) has a positive lower bound σ on the compact
Ku0 . Since the family of compacts is regular and Ku is explicitly bounded in terms of u
then for (c,u) in a neighbourhood of (c0,u0) in Rm ×W , the function fn,d(c,x) is bigger
than σ/2 what implies that V is open in Rm×W and so locally closed. So there exist two
K-semipolynomials v1(c,u) and v2(c,u) in the variables (c,u) defining V and giving the
following equivalences

(c,u) ∈ V ⇐⇒ v1(c,u) ≥ 0, v2(c,u) > 0 ⇐⇒ ∀x ∈ Ku fn,d(c,x) > 0

These equivalences provide the following incompatible system of generalized sign con-
ditions for the K-semipolynomials

v1(c,u) ≥ 0, v2(c,u) > 0, −fn,d(c,X) ≥ 0

Applying the Real Positivstellensatz for semipolynomials to this system, one gets an alge-
braic identity in x parameterized by K-semipolynomials in (c,u), providing the evidence
(in the usual algebraic way) that fn,d(c,x) > 0 when u ∈ W , x ∈ Ku and (c,u) ∈ V .

VI. Some consequences for the Constructive Algebra over the real
numbers presented ”à la Cauchy”.

In Constructive Mathematics (see [BB] or [MRR]) the theorems introduced in the sections
III, IV and V are valid when the parameters belong to the real closure R of an ordered
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and discrete field K (see [LR]) because in this setting we have a constructive proof for the
Real Positivstellensatz (see [Lom1]).

Every point of view will find its place in the following remark: all our proofs are
effective, in particular without using the Axiom of Choice, and more precisely, provide
uniformly primitive recursive algorithms if the structure of the field of parameters is given
by an oracle showing the sign of every polynomial with integer coefficients in the parameters
of the problem considered.

One question still missed is the study of the constructive meaning for these results
in the framework of the field IR: the field of real numbers for the Constructive Analysis
(see [BB]), i.e. the real numbers defined as Cauchy sequences of rational numbers. From
the algorithmic point of view, this means that the real parameters c are given by oracles
providing suitable rational approximations for these real numbers and that we are looking
for an uniformly primitive recursive algorithm. In [GL] we shall provide a study of this
question as systematic as possible.

In this section it will be shown how to use the parameterized results obtained concern-
ing the 17th Hilbert’s problem to derive the same theorem in Constructive Algebra (while
the non-parameterized solution does not allow to derive any kind of consequence). The sec-
tion will be ended showing how, we think, it is necessary to formulate the Positivstellensatz
problem when dealing with Cauchy real numbers.

VI.1 The 17th Hilbert’s problem.

Let R be the field of real algebraic numbers. Since the equivalence

∀x ∈ Rn fn,d(c,x) ≥ 0 ⇐⇒ Hn,d(c) ≥ 0

is true for every c real algebraic then by continuity we have

∀x ∈ IRn fn,d(c,x) ≥ 0 ⇐⇒ Hn,d(c) ≥ 0

The answer for the 17th Hilbert’s problem provided by theorem IV.1 uses polynomials
and semipolynomials with rational coefficients which can be, at least in principle, fully
determined. The fact concerning the positivity of the coefficients (which must be positive)
is constructively clear when dealing with real numbers ”à la Cauchy” under the hypothesis
Hn,d(c) ≥ 0. This implies that if the parameters c are in IR and verify Hn,d(c) ≥ 0 then
fn,d(c,x) ≥ 0 for every x. We have obtained

∀c ∈ IRm
(
Hn,d(c) ≥ 0 =⇒ ∀x ∈ IRn fn,d(c,x) ≥ 0

)

with the evidence of this fact given by an algebraic identity. So, when Hn,d(c) ≥ 0, the 17th

Hilbert’s problem is solved in a continuous and rational way with respect to its coefficients.
To complete the continuous and rational solution for the field IR we need a constructive

proof for the implication

∀x ∈ IRn fn,d(c,x) ≥ 0 =⇒ Hn,d(c) ≥ 0
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when c is a point with coordinates in IR. The simple proof we show here, has been given
in [Lom4] for the homegeneous case.

Let Gn,d(IR) be the subset of IRm defined by the first member of the implication to
be shown and Fn,d(IR) the second one. We remark that the problem is reduced to the case
when d is even and this is assumed in all that follows.

So we have Fn,d(IR) ⊆ Gn,d(IR) and we want to prove the other inclusion. We see that
Gn,d(IR) is a convex and closed cone and as the point c corresponding to the polynomial

1 +
( n∑

i=1

x2
i

) d
2

is interior to Gn,d(IR), we obtain that Gn,d(IR) is the adherence of its interior.
Moreover, using the equivalence for every rational c

∀x ∈ IRn fn,d(c,x) ≥ 0 ⇐⇒ Hn,d(c) ≥ 0

(also true for c real algebraic) we derive that the sets Fn,d(IR) and Gn,d(IR) have the same
rational points. So, given a point in Gn,d(IR), we can express it as the limit of a sequence
of rational points in Fn,d(IR) which implies that it belongs to Fn,d(IR) because Fn,d(IR) is
closed.

A constructive proof, more delicate, for the equivalence

∃x ∈ IRm fn,d(c,x) < 0 ⇐⇒ Hn,d(c) < 0

when c is an arbitrary point with coordinates in IR, will be given in [GL].

VI.2 Some cases where the continuous and rational solution for the Real Pos-
itivstellensatz can be extended constructively to the field of real numbers.

Let K be a discrete subfield of IR (usually K = 0Q but another fields as 0Q(π) can be
considered). Let IH(c,X) be, as in section V, a system of generalized sign conditions on
K[c,X] where the Xi’s are the true variables and the cj ’s are considered as parameters
and SIH the semialgebraic set defined by

SIH = {c : ∀x ∈ Rn IH(c,x) is incompatible}

where R is the real closure of K
If SIH is locally closed then applying the Finiteness Theorem we can contruct, in

explicit way, two K-spe H1(c) and H2(c) such that

SIH = {c : ∀x ∈ Rn IH(c,x) is incompatible} = {c : H1(c) ≥ 0 and H2(c) > 0}

The algebraic identity provided by the strong incompatibility of the system

[
H1(c) ≥ 0, H2(c) > 0, IH(c,X)

]
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can be extended by continuity to the case when c and x have their coordinates in IR and
as the evidence of the conditions ≥ 0 or > 0 on some coefficents is also maintained then it
has been proved constructively the implication

∀c ∈ IRm
((

H1(c) ≥ 0 and H2(c) > 0
)

=⇒ ∀x ∈ IRn IH(c,X) is incompatible
)

and this implication is made evident by an algebraic identity in X, whose coefficients are
K-semipolynomials in c

So, to prove constructively the corresponding case of the Real Positivstellensatz (con-
tinuous and rational) is the same thing that to provide a constructive proof for the impli-
cation

∀x ∈ IRn IH(c,X) is incompatible =⇒ (
H1(c) ≥ 0 and H2(c) > 0

)

when c is a point with coordinates in IR.
In the particular case of 17th Hilbert’s problem the proof was found taking advantage

of the particular case we were dealing with. So more general tools to deal with these kind
of questions need to be created. A result seems essential, the constructive proof that for
any locally closed semialgebraic set S defined by the conditions H1(c) ≥ 0 and H2(c) > 0
(with H1(c) and H2(c) K-semipolynomials), every point in S(IR) is a limit of points in
S(R).

If this program is fullfilled, example V.3 will provide a Positivstellensatz for the case
of a polynomial in IR[X] everywhere positive on a 0Q-semialgebraic basic compact set,
and example V.4 will provide a Positivstellensatz for the case of a polynomial in IR[X]
everywhere positive on a IR-semialgebraic basic compact set that can be described as a
member of a regular family of 0Q-semialgebraic basic compact sets.
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