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The Positivstellensatz
Historical and general background

17th Hilbert’s Problem

For P ∈ R[X1, . . . , Xn] everywhere nonnegative on Rn, write P as a
sum of squares in R(X1, . . . , Xn).

Algebraic certificate of nonnegativity.

More rational: for P ∈ Q[X1, . . . , Xn] everywhere nonnegative on Qn,
write P as a sum of squares in Q(X1, . . . , Xn).

More generally (Artin), let K be an ordered field where > 0 elements
are sums of squares. For P ∈ K[X1, . . . , Xn] everywhere nonnegative
on Rn, write P as a sum of squares in K(X1, . . . , Xn). Here R is a
real closure of K.
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The Positivstellensatz. General background

Real Nullstellensatz

If g ∈ R[X1, . . . , Xn] is zero at the zeroes of f1, . . . , fs ∈ R[X] in Rn,

there is an algebraic certificate for this.

g2m + a S.O.S. + f = 0, where f ∈ 〈f1, . . . , fs〉

Weak form

If f ∈ R[X] has no zero in Rn, there is an algebraic certificate for

this.

1 + a S.O.S. + fh = 0.
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The Positivstellensatz. General background

Krivine-Stengle Positivstellensatz. Rational form.

Let K be an ordered field, contained in a real closed field R.

If H is a system of sign conditions (> 0, ≥ 0, = 0) on a finite family

((s1, . . . , sk), (p1, . . . , p`), (g1, . . . , gm)) = (H>,H≥,H=)

in K[X1, . . . , Xn] which is impossible in Rn, there is a rational alge-

braic certificate for this:

S + P +N = 0,

• S is > 0 from H>,

• P is ≥ 0 from H> ∪H≥,

• N is = 0 from H=.
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The Positivstellensatz. General background

More precisely.

1. “S is > 0 from H>” means that S belongs to the multiplicative

monoid generated by the si’s and K>0.

2. “P is ≥ 0 from H> ∪ H≥” means that P belongs to the cone in

K[X] generated by the si’s, the pi’s, and K>0.

3. “N is = 0 from H=” means that P belongs to the ideal of K[X]

generated by the gi’s.
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The Positivstellensatz. General background

Some remarks.

1. This Positivstellensatz implies many variants.

E.g., “an algebraic certificate for a polynomial being > 0 on a

given semi-algebraic set”

2. The Positivstellensatz follows “easily” from the weak real Null-

stellensatz (via variants of the Rabinovitch trick).

3. The Positivstellensatz implies improved solution for the 17th.

4. It seems impossible to deduce de Positivstellensatz from a solu-

tion for the 17th.
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The Positivstellensatz. General background

Related problems to this context.

Geometric hypothesis implies Algebraic certificate.

1. Is the geometric hypothesis a concrete, decidable hypothesis?

2. When this is the case, can we construct the algebraic certificate

(a nice formula) from the hypothesis?

3. Does the nice formula depends continuously on the hypothesis.

Answers for 1 and 2 are YES in a discrete setting, i.e., when we

have a sign test in K.

Answer for 1 is a priori NO for the usual real number field R.

Answer for 2 is unclear for R.

Answer for 3 is YES for the 17th (so we can drop the discreteness)

and for other “good” cases: when the parameters vary on a locally

closed semi-algebraic set.
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The Positivstellensatz
Logical background

An algebraic certificate is a very simple proof of the result (emptiness

of a specified semi-algebraic set).

Constructing a Positivstellensatz can be seen as a proof transfor-

mation.

We start from a complicated proof of the hypothesis, we transform

the proof in a simpler and simpler one, until we reach the simplest

possible form: an algebraic certificate.

In the discrete setting (today we shall work in this context), the

hypothesis admits certainly a proof by the completeness of the first

order theory of discrete real closed fields.
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The Positivstellensatz. Logical background

In the nondiscrete setting, things are more mysterious, since we

don’t know a priori the content of the hypothesis: i.e., some proof

of emptiness.

Note that this kind of problem is always present in mathematics when

some conclusion has a truly concrete form. A priori, the correspond-

ing concrete form of the hypothesis has to be a constructive proof

of the hypothesis.

If this is not the case, something very strange appears: a kind of

miracle to be understood. E.g., for Heine-Borel there is no known

concrete form of the hypothesis (more precisely, the only known

concrete form of the hypothesis is the conclusion).

9



The Positivstellensatz. Logical background

Logically complicated proofs may be much shorter than simpler

proof.

E.g., there exist emptiness tests of rather low complexity (∼ single

exponential) using infinitesimals and Morse theory.

But it seems very difficult to transform this kind of proof in a first

order proof, without, at the same time, getting a much longer proof.

Even the Collins CAD (double exponential complexity) is not easy to

transform in a first order proof. Indeed it is based on semi-algebraic

connectedness of cells. But semi-algebraic connectedness is not a

first order property in the theory of DRCF.
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The Positivstellensatz. Logical background

Our general plan to attack the problem is as follows.

1) Find a first order proof which is not too long, and rather simple

(no quantifiers, or a minimal use of quantifiers).

2) Transform each step of the proof in a suitable:

construction of algebraic certificates from algebraic certificates.

The best first order proof we have found is a suitable modification of

the CAD. When “eliminating one variable” we need to saturate the

family by derivation and to build algebraic certificates for the signs

of the family in each cell.

These algebraic certificates are based on real counting à la Hermite.
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First order theory of

discrete real closed fields

(K, • = 0, • > 0, • ≥ 0,+,−,×,0,1)

x = y means x− y = 0 x ≥ y means x− y ≥ 0

x > y means x− y > 0 x 6= y means (x− y)2 > 0

Direct rules

1. (K,= 0,+,−,×,0,1) is a commutative ring. I.e., computational

machinery of commutative rings, plus three direct axioms:

` 0 = 0, x = 0 ` xy = 0, x = 0, y = 0 ` x+ y = 0.

2. ` 1 > 0

3. x = 0 ` x ≥ 0

4. x > 0 ` x ≥ 0

5. ` x2 ≥ 0

6. (x > 0, y ≥ 0) ` x+ y > 0

7. (x > 0, y > 0) ` xy > 0

8. (x ≥ 0, y ≥ 0) ` x+ y ≥ 0

9. (x ≥ 0, y ≥ 0) ` xy ≥ 0

12



First order theory of discrete real closed fields

Simplification rules

11. x2 ≤ 0 ` x = 0

12. (c ≥ 0, cs > 0) ` s > 0

13. (s > 0, cs ≥ 0) ` c ≥ 0

14. (c ≥ 0, x(x2 + c) ≥ 0) ` x ≥ 0

Dynamic rules

15. x+ y > 0 ` x > 0 ∨ y > 0

16. xy > 0 ` x > 0 ∨ −y > 0

17. x2 > 0 ` ∃ y xy = 1

18. x ≥ 0 ` ∃ y x = y2 (Euclidean field)

19. ` ∃ y y3 + ay2 + by + c = 0 (Real closure, degree 3) . . .

Discreteness
DOF ` x = 0 ∨ x2 > 0
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Transformation of each step of the proof

Weak inference

Assume first that H1 and H2 are systems of sign conditions and that
we have a rather easy logical deduction rule H1 ` H2 valid in the
theory of DRCF.
E.g., a direct rule or a simplification rule.

We transform logic into computation in the following way.
We note ↓ H ↓ as an abbreviation for:
here is an algebraic certificate for the impossibility of H.

Now our aim is to prove the weak inference H1 `w H2 ,
which means:
if H is an arbitrary context, we explain how to construct ↓ H1,H ↓
from ↓ H2,H ↓.
Moreover we compute a “degree function” which is a bound on the
degree of ↓ H1,H ↓ from a bound on the degree of ↓ H2,H ↓.
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Transformation of each step of the proof

Weak disjunction

Assume that Hi (i = 1,2,3) are systems of sign conditions and that

we have a rather easy deduction rule H1 ` H2 ∨H3 valid in the

theory of DRCF.

Our aim is to prove the weak inference (or weak disjunction)

H1 `w H2 ∨H3 which means:

If H is an arbitrary context, we explain the construction of ↓ H1,H ↓
from ↓ H2,H ↓ and ↓ H3,H ↓.

Moreover we compute a “degree function” which is a bound on the

degree of ↓ H1,H ↓ from bounds on the degrees of ↓ H2,H ↓ and

↓ H3,H ↓.
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Transformation of each step of the proof

Weak existence

Assume that H1 and H2 are systems of sign conditions, T, U are

variables present in H2 but not in H1 and that we have a rather easy

deduction rule H1 ` ∃T, U H2 valid in the theory of DRCF.

Our aim is to prove weak inference (or weak existence)

H1 `w ∃T, U H2

which means:

if H is an arbitrary context without the variables T, U , we explain the

construction of ↓ H1,H ↓ from ↓ H2,H ↓.

Moreover we compute a “degree function” which is a bound on the

degree of ↓ H1,H ↓ from a bound on the degree of ↓ H2,H ↓.
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A simple and short first order proof

What do we want to prove ?

Given an arbitrary polynomial system f1, . . . , fs ∈ K[X1, . . . , Xn] we
want to find a “simple” first order proof of the disjunction giving all
possible combinations of signs for the family:

` H1 ∨ H2 ∨ · · · ∨ H`

If the proof involves only simple deduction rules, we are able to
transform this proof in the corresponding weak disjunction

`w H1 ∨ H2 ∨ · · · ∨ H`

Now, if H is a system of sign conditions not appearing in the list, we
have ↓ H,Hi ↓ for each i, and the weak disjunction computes ↓ H ↓
from these ↓ H,Hi ↓. If the simple “dynamical proof” is not too
long, we get a degree bound not too high for ↓ H ↓.
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A certified cylindric

algebraic decomposition

A CAD for the given family gives all possible sign combinations.

The problem comes from the difficulty to have a simple proof that

the CAD gives actually all possible sign combinations.

By simple proof, we mean a proof using only few “simple” dynamical

rules, which is a kind of quantifier free proof.

Note that the final algebraic identity gives a proof inside the theory

of ordered rings using only very simple direct rules. In particular it

does not use existential rules, nor discreteness.
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A certified cylindric algebraic decomposition

Surprinsingly difficult simple results

In fact, even if real roots do not appear in the conclusion, it seems

impossible to get some rather elementary results without using real

roots in the proof.

E.g., the fact that the Sturm count gives always a nonnegative num-

ber of roots on an interval remains a crucial challenge:

no “reasonable” bounds are known for the corresponding algebraic

certificates.
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A certified cylindric algebraic decomposition

Weak existence of real roots

Weak existence of a real root on an interval where the sign changes

is a crucial tool for CAD. The computation for the weak existence of

a real root of polynomial of degree p = 2q + 1 mimics Artin’s proof

of the following result.

Theorem If f = Xp +
∑p−1
i=0 aiX

i ∈ K[X] is irreducible, where K is a

real field, then K[x] = K[X]/〈f〉 is a real field.

The weak existence of a root of f when ai are polynomials in param-

eters is obtained by induction on q and gives a rather bad degree-

function.
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A certified cylindric algebraic decomposition

Weak existence of real roots: a bad degree function

• h(k, p) = 23·2
k+1

2 −3p2
k+1

2 −1,

• h(p) = h(p, p). Approximately h(p) = p2p

• degree-function: ∆(δ, ρ; p, d) = (δ + dρ)h(p).

where ρ is the T -degree of the initial incompatibility and d is the

degree of f in other variables than T
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A certified cylindric algebraic decomposition

Hermite theory for certifying signs at the zeroes

We have to certify that a given family F of polynomial in K[X1, . . . , Xk][Y ]

has the same behaviour over all the points of a given cell when “we

eliminate Y ”, i.e., when we make a projection Rk+1 → Rk.

The family has to be saturated w.r.t. Y -derivation, and we want to

know the sign of each polynomial of F at the zeroes of the other

polynomials of F. As a consequence, we will have the Thom’s-coding

of each zero.

We use Hermite’s theory for real counting and an algorithm à la

BKR, modified in such a way that there are not too many branches

in the computation.
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A certified cylindric algebraic decomposition

Hermite theory for certifying signs at the zeroes

Hermite’s theory uses signature of quadratic forms. We need to

develop a theory of signatures of symmetric real matrices in a pure

“algebraic identities form”.

We get algebraic certificates related to the signature: they show

that the computed signature cannot be different when counted in two

different ways.

Hermite’s theory uses all complex roots of the given real poly-

nomial we have to study.

So we need the weak existence for complex roots of a real poly-

nomial.
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A certified cylindric algebraic decomposition

Laplace proof of the FTA

Laplace proof of the FTA can be formalized in the theory of RCDF.

Starting with a polynomial of degree p = 2r(2s+ 1), it constructs a

polynomial of odd degree ≤ p2r ≤ pp. We use the weak existence of

a real root for this polynomial in order to get the weak existence of

a complex root of the initial polynomial.

This leads to a triple exponential degree-function for the weak ex-

istence corresponding to the decomposition of the polynomial in a

product of complex linear factors.
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A certified cylindric algebraic decomposition

From signs at the zeroes to signs on all the real line

When we have algebraic certificates for the zeroes of a family F
above a cell, we get algebraic certificates for the signs of the poly-

nomials of F on the intervals defined by the zeroes.

This is almost for free, because variants of Taylor formulas do the

job.

25



A certified cylindric algebraic decomposition

Controlling the total number of cells

When eliminating the variable Y in K[X1, . . . , Xk][Y ], we have to use

test coefficients in K[X].

In the usual CAD, they are Y -resultants of pairs of polynomials in F.

Here, we need more coefficients, controlling the signatures of suitable

Hankel matrices related to Hermite theory.

Nevertheless, we are able to control not only the degrees of the

test coefficients, but also the number of these coefficients. This is

related to bounds on the number of possible sign combinations for

a given (rather large) family of polynomials in few (= k) variables.
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A certified cylindric algebraic decomposition

Degree bound for this kind of proof

A bound for degrees of polynomials in a CAD is classically double

exponential.

The main ingredient for the complexity comes from Laplace proof

of the FTA, which leads, for weak existence, to a triple exponential

bound w.r.t. the degree of polynomials occurring in the CAD.

The number of cells and of polynomials seems rather well controlled

(doubly exponential).

So, if no unsuspected catastroph appears in the computation, we

think to obtain a 5-exponential bound as

22222n+s+d
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