An Algorithm for the Traverso-Swan theorem on seminormal rings

Sami Barhoumi $(^1)$, Henri Lombardi $(^2)$

June 4, 2008

Abstract

We give an algorithm for an explicit implementation of Traverso-Swan's theorem, saying that a reduced ring \mathbf{A} is seminormal if and only if the canonical map: Pic $\mathbf{A} \to$ Pic $\mathbf{A}[x]$ is an isomorphism.

MSC 2000 : 13C10, 19A13, 14Q20, 03F65.

Keywords : Seminormal ring, Picard Group, Constructive Mathematics, Traverso-Swan theorem, Resultant ideal, Subresultant module.

1 Introduction

In [2] T. Coquand obtained a constructive proof of the fact that a reduced ring A is seminormal if and only if the canonical map:

$$\operatorname{Pic} \mathbf{A} \to \operatorname{Pic} \mathbf{A}[x]$$

is an isomorphism. This theorem is due to Swan [8], generalizing a result of Traverso [9].

We recall [8] that a ring **A** is seminormal if when $b^2 = c^3$ then there exists $a \in \mathbf{A}$ such that $b = a^3$ and $c = a^2$. This is a remarkably simple condition. Similarly the statement that the canonical map $\operatorname{Pic} \mathbf{A} \to \operatorname{Pic} \mathbf{A}[x]$ is an isomorphism can also be formulated in an elementary way. Swan's original definition includes that **A** is reduced, but, as noticed by Costa [4], reduceness follows from seminormality: if $d^2 = 0$ then $d^2 = 0^3 = 0$ and so there exists $a \in \mathbf{A}$ such that $a^3 = d$ and $a^2 = 0$. So d = 0.

When $\mathbf{A} \subseteq \mathbf{B}$ are commutative rings, the *seminormal closure* of \mathbf{A} in \mathbf{B} is the smallest subring \mathbf{A}_1 of \mathbf{B} containing \mathbf{A} such that if $x \in \mathbf{B}$, $x^2 \in \mathbf{A}_1$ and $x^3 \in \mathbf{A}_1$ then $x \in \mathbf{A}_1$.

In this paper, we give an algorithm for an explicit implementation of Traverso-Swan's theorem. More precisely let **C** be a reduced ring and $f_1, \ldots, f_n, g_1, \ldots, g_n$ polynomials in $\mathbf{C}[X]$ such that $f_1 \cdot g_1 + \cdots + f_n \cdot g_n = 1$, $f_1(0) = g_1(0) = 1$ and $f_i(0) = g_i(0) = 0$ for $i \ge 2$. Let **A** be the ring generated by the coefficients of $m_{ij} = f_i \times g_j$ and **B** the ring generated by the coefficients of $m_{ij} = f_i \times g_j$ and **B** the ring generated by the coefficients of f_i and g_j . We construct finitely many elements $c_1, \ldots, c_m \in \mathbf{B}$ such that $c_{i+1}^2, c_{i+1}^3 \in \mathbf{A}[c_1, \ldots, c_i]$ and $\mathbf{B} = \mathbf{A}[c_1, \ldots, c_m]$.

 $^{^1}Équipe$ de Mathématiques, UMR CNRS 6623, UFR des Sciences et Techniques, Université de Franche-Comté, 25030 BESANCON cedex, FRANCE, email: sami.barhoumi@univ-fcomte.fr.

² Same address, email: henri.lombardi@univ-fcomte.fr.

2 First steps for Traverso-Swan's theorem on seminormality

In this section we recall some steps in the constructive method of T. Coquand [2].

To any commutative ring \mathbf{A} one associates the group of projective modules of rank one equipped with tensor product as group operation. This is the Picard group Pic \mathbf{A} of the ring \mathbf{A} . We can represent any finitely generated projective module P over \mathbf{A} as the image of an $n \times n$ idempotent matrix M. The module $P \simeq \text{Im } M$ is of rank one if and only if $\det(\mathbf{I}_n + xM) = 1 + x$. Equivalently Tr M = 1 and any 2×2 minor of M equals 0. If $M \in \mathbf{A}^{n \times n}$ represents a projective \mathbf{A} -module P of rank one, we use the notation

$$M \simeq_{\mathbf{A}} \mathbf{I}_{1,n} = \begin{pmatrix} 1 & 0_{1,n-1} \\ 0_{n-1,1} & 0_{n-1,n-1} \end{pmatrix}$$

for expressing that P is a free module over \mathbf{A} . Precisely we have:

Lemma 1 Let M be a projection matrix of rank one over a ring \mathbf{A} . Then $M \simeq_{\mathbf{A}} \mathbf{I}_{1,n}$ if and only if there exist $f_i, g_j \in \mathbf{A}$ such that $m_{ij} = f_i g_j$ for each i, j. If we write f the column vector (f_i) and g the row vector (g_j) this can be written as M = fg. Furthermore the column vector f and the row vector g are uniquely defined up to a unit by these conditions: if we have other vectors f' and row g' such that M = f'g' then there exists a unit u of \mathbf{A} such that f = uf' and g' = ug.

Note that in the reverse way when we have a column vector f and a row vector g, if gf = 1, then the matrix M = fg is a projection matrix of rank 1.

Theorem 2 (Traverso-Swan-Coquand)

Let k be a positive integer. A reduced ring **A** is seminormal if and only if the canonical map $\operatorname{Pic} \mathbf{A} \to \operatorname{Pic} \mathbf{A}[x_1, \ldots, x_k]$ is an isomorphism.

The "only if part" is based on a Schanuel example. The proof of the "if part" is much more difficult. In this paper we give an algorithm for the following particular case (k = 1).

Theorem 3 Le A be a seminormal ring. Then the canonical map $\operatorname{Pic} \mathbf{A} \to \operatorname{Pic} \mathbf{A}[x]$ is an isomorphism.

The first author will propose in a following paper a direct algorithmic proof of the implication "A seminormal implies $\mathbf{A}[x]$ seminormal". Combined with the present paper this will give an algorithm for the general case (Theorem 2).

First steps in Coquand's proof are based on the following lemmas.

Lemma 4 If **A** is a reduced ring, then the canonical map $\operatorname{Pic} \mathbf{A} \to \operatorname{Pic} \mathbf{A}[x]$ is an isomorphism if and only if for any $n \times n$ projection matrix $M(x) = (m_{ij}(x))$ of rank one over $\mathbf{A}[x]$ such that $M(0) = I_{1,n}$, there exist $f_i, g_j \in \mathbf{A}[x]$ such that f(0) = g(0) = 1 and $m_{ij} = f_i g_j$.

Let us recall that a ring is zero-dimensional and reduced if and only if every element a has a quasi-inverse, i.e. an element a^{\bullet} such that

$$a^2 a^{\bullet} = a$$
, and $a(a^{\bullet})^2 = a^{\bullet}$.

Such a ring is often called a Von Neuman regular ring.

In constructive mathematics we say that a ring is a discrete field if we have the disjunction "any element is zero or invertible" in an explicit way (see [7] for basic concepts of constructive algebra). A discrete field is zero-dimensional and reduced.

Lemma 5 If **A** is a reduced ring then **A** has a reduced zero-dimensional extension.

For Lemma 5, if \mathbf{A} is an integral domain, we can take the fraction field of \mathbf{A} .

Lemma 6 If C is a reduced zero-dimensional ring, then any finitely generated projective module of rank one over C[x] is free.

In case **C** is a discrete field we can use the following procedure for Lemma 6. We start with a projection matrix of rank one $M(x) = (m_{ij})$ such that $M(0) = I_{1,n}$. We take for f_1 the gcd of the first row of M in $\mathbf{C}[x]$ with $f_1(0) = 1$. Then $g_j = \frac{m_{1j}}{f_1}$, $f_i = \frac{m_{i1}}{g_1}$.

Since lemmas 4, 5 and 6 are relatively easy, the more difficult part in the proof of Theorem 3 is given by Theorem 8 below.

Context: Let **B** be a reduced ring and f_i , g_i (i = 1, ..., n) polynomials in **B**[x] such that $\sum f_i g_i = 1$, $f_1(0) = g_1(0) = 1$ and $f_i(0) = g_i(0) = 0$ for $i \ge 2$. Let $m_{ij}(x) = f_i(x)g_j(x)$. Let **A** be the ring generated by the coefficients of m_{ij} 's. We assume also that **B** is generated by the coefficients of f_i and g_i . We denote by **A**₁ the seminormal closure of **A** in **B**.

Remark 7 Let us explain how to come within Context if we start with a projection matrix of rank one $M(x) = (m_{ij})$ such that $M(0) = I_{1,n}$. Let **A** be the ring generated by the coefficients of m_{ij} 's. We consider a reduced zero-dimensional ring **C** containing **A** (Lemma 5). We find polynomials f_i and g_i in $\mathbf{C}[x]$ such that $f_1(0) = 1 = g_1(0)$ and $m_{ij} = f_i g_j$ for any i, j (Lemma 6). Then **B** is the ring generated by the coefficients of f_i 's and g_i 's. As already explained, in case the matrix has its coefficients in an integral ring this procedure is particularly simple.

Using Lemma 4 and the previous remark (which is based on constructive proofs of Lemmas 5 and 6) it is clear that Theorem 3 is a consequence of the following more precise statement.

Theorem 8 Within Context, $\mathbf{A}_1 = \mathbf{B}$. More precisely there are finitely many elements $c_1, \ldots, c_m \in \mathbf{B}$ such that $c_{i+1}^2, c_{i+1}^3 \in \mathbf{A}[c_1, \ldots, c_i]$ $(i \in \{1, \ldots, m-1\})$ and $\mathbf{B} = \mathbf{A}[c_1, \ldots, c_m]$.

Lemma 9 Within Context, the coefficients of f_i and g_j are integral over **A**. So **B** is finite as an **A**-module.

Indeed, if u is a coefficient of f_i , it follows from $f_i g_j \in \mathbf{A}[x]$ that $ug_j(0)$ is integral over \mathbf{A} for all j. This is a consequence of Kronecker's theorem [3, 5, 6] that states that if $P_1P_2 = Q \in \mathbf{A}[x]$ then any product u_1u_2 , where u_i is a coefficient of P_i , is integral over the ring generated by the coefficients of Q. Since $g_1(0) = 1$, this implies that u is integral over \mathbf{A} .

In the sequel of the paper we explain how to get algorithmically Theorem 8.

In section 3 we give some preliminary lemmas for this construction. In section 4 we give the algorithm for a 2×2 projection matrix of rank one. In section 5 we give the general algorithm for an $n \times n$ projection matrix of rank one.

3 Preliminary Lemmas

Lemma 10 Let $c \in \mathbf{B}$ and $m \in \mathbb{N}$ such that $c^n \in \mathbf{A}_1$ for any $n \ge m$, then $c \in \mathbf{A}_1$.

Proof For example let $m = 2^4 = 16$. We have following:

since c^{16} and $c^{24} \in \mathbf{A}_1$ then $c^8 \in \mathbf{A}_1$, since c^{18} and $c^{27} \in \mathbf{A}_1$ then $c^9 \in \mathbf{A}_1$, and so on for any $n \geq 8$, $a^n \in \mathbf{A}_1$. Briefly we can pass from 2^4 to 2^3 . In the same way we pass from 2^3 to 2^2 , and from 2^2 to 2. Thus c^2 and $c^3 \in \mathbf{A}_1$, so $c \in \mathbf{A}_1$.

Lemma 11 \mathbf{A} [coefficients of f_1] = \mathbf{B}

Proof Let \mathbf{B}' be the ring generated by \mathbf{A} and the coefficients of f_1 . We have $m_{1j} = f_1 g_j$, $f_1(0) = 1$. Suppose that deg $m_{1j} \leq d$. We divide m_{1j} by f_1 by ascending powers, we obtain $m_{1j} = qf_1 + x^{d+1}h$, $q, h \in \mathbf{A}[x]$. Necessarily $h = 0, q = g_j$ and thus the coefficients of g_j are polynomial combinations of those of m_{1j} and f_1 . It follows that $g_j \in \mathbf{B}'[x]$. Since $g_1 \in \mathbf{B}'[x]$ we obtain in a similar way that $f_i \in \mathbf{B}'[x]$. So $\mathbf{B} = \mathbf{B}'$.

Example 12 Let n = 2, $f_1 = 1 + ax + bx^2$, $f_2 = cx + dx^2$, $g_1 = 1 + ex + fx^2$, $g_2 = gx + hx^2$, $m_{11} = f_1g_1$, $m_{12} = f_1g_2$, $m_{21} = f_2g_1$, $m_{22} = f_2g_2$. We have $\mathbf{B} = \mathbf{A}[a, b]$, and a, b are integral over \mathbf{A} .

Lemma 13 If $a \in \mathbf{A}$ and $af_1 \in \mathbf{A}[x]$ then there exists $k \in \mathbb{N}$ such that $a^k \mathbf{B} \subseteq \mathbf{A}$.

Proof We have $\mathbf{B} = \mathbf{A}[b_1, \ldots, b_r]$ where $f_1 = 1 + b_1 x + \cdots + b_r x^r$ (Lemma 11). Every b_i is integral over \mathbf{A} . Let d_i be the degree of an integral dependence relation of b_i . Then $\mathbf{B} = \sum \mathbf{A} b^{\delta}$, with $b^{\delta} = b_1^{\delta_1} \ldots b_r^{\delta_r}$, $0 \leq \delta_i < d_i$. (δ means $\delta_1, \ldots, \delta_r$ and b^{δ} is a pure notation). If $af_1 \in \mathbf{A}[x]$ and $\sum (d_i - 1) = k$, then $a^k b^{\delta} = (ab_1)^{\delta_1} \cdots (ab_r)^{\delta_r} \cdot a^{k-\sum \delta_i}$ with $k - \sum \delta_i \geq 0$. So $a^k b^{\delta} \in \mathbf{A}$. Thus $a^k \mathbf{B} \subseteq \mathbf{A}$.

Lemma 14 If $a \in \mathbf{A}$ and $a^m \mathbf{B} \subseteq \mathbf{A}$ for some $m \in \mathbb{N}$, then $a\mathbf{B} \subseteq \mathbf{A}_1$.

Proof For $b \in \mathbf{B}$ we have $(ab)^m \mathbf{B} \subseteq \mathbf{A}$. This implies that $(ab)^n \in \mathbf{A}_1$ for any $n \geq m$. Applying Lemma 10, we get $a\mathbf{B} \subseteq \mathbf{A}_1$.

Lemma 15 Let $a \in \mathbf{B}$ and $\ell \in \mathbb{N}$ such that $a^{\ell} f_1 \in \mathbf{A}[x]$, then $\sqrt{a\mathbf{B}} \subseteq \mathbf{A}_1$.

Proof This follows from Lemma 13 and Lemma 14.

Fact 16 Let $\mathbf{C} \subseteq \mathbf{B}$ be two rings and \mathcal{J} an ideal of \mathbf{B} . Then $\mathbf{C} + \mathcal{J}$ is a ring, \mathcal{J} is an ideal of $\mathbf{C} + \mathcal{J}$, $\mathbf{C} \cap \mathcal{J}$ is an ideal of \mathbf{C} , and the isomorphism of \mathbf{C} -modules $(\mathbf{C} + \mathcal{J})/\mathcal{J} \simeq \mathbf{C}/(\mathbf{C} \cap \mathcal{J})$ is an isomorphism of rings.

Lemma 17 With Lemma 15 hypotheses, we have $\mathbf{A} + \sqrt{a\mathbf{B}} \subseteq \mathbf{A}_1$. Let $\mathcal{J} = \sqrt{a\mathbf{B}}$,

$$\mathbf{A} = (\mathbf{A} + \mathcal{J})/\mathcal{J} \subseteq \mathbf{A}_1/\mathcal{J} \quad ext{and} \quad \mathbf{B} = \mathbf{B}/\mathcal{J},$$

then \mathbf{A}_1/\mathcal{J} is the seminormal closure of $\widetilde{\mathbf{A}}$ in $\widetilde{\mathbf{B}}$.

Proof Let C be the seminormal closure of $\widetilde{\mathbf{A}}$ in $\widetilde{\mathbf{B}}$. We write $\mathbf{C} = \mathbf{A}_2/\mathcal{J}$ with $\mathcal{J} \subseteq \mathbf{A}_2$ as a subring of \mathbf{B}/\mathcal{J} . It is clear that $\mathbf{A}_1 \subseteq \mathbf{A}_2$. Let $x \in \mathbf{A}_2$ and assume first that $\bar{x}^2, \bar{x}^3 \in \widetilde{\mathbf{A}}$. Then $x^2, x^3 \in \mathbf{A}_1$, so $x \in \mathbf{A}_1$. Reasoning inductively, we replace \mathbf{A} by $\mathbf{A}[x]$. Since any element in \mathbf{C} can be reached in a finite number of steps, we see that $\mathbf{A}_2 = \mathbf{A}_1$. \Box

The concrete consequence of Lemma 17 for our computation is that, whenever we find an $a \in \mathbf{B}$ such that $a^{\ell} f_1 \in \mathbf{A}[x]$ for some integer ℓ , we are allowed to replace \mathbf{A} and \mathbf{B} by $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$. Indeed, it is clear that hypotheses of Context remain true for these rings, and if forthcoming computations show that the seminormal closure of $\widetilde{\mathbf{A}}$ in $\widetilde{\mathbf{B}}$ is equal to $\widetilde{\mathbf{B}}$, Lemma 17 says that $\mathbf{A}_1 = \mathbf{B}$.

In short "we are allowed to continue the computation modulo \mathcal{J} ".

4 The Case 2×2

Resultant and subresultants

For two polynomials $P = a_p x^p + \cdots + a_0$ and $Q = b_q x^q + \cdots + b_0$ of formal degrees p and q, we denote by $\operatorname{Res}_x(P, p, Q, q)$ the resultant of P and Q; that is to say the determinant of the Sylvester Matrix:

First we recall well known identities (see e.g., [1] chapter 3).

Fact 18 Let $P, Q, Q_1, R, U \in \mathbf{A}[x]$ of formal degrees p, q, q_1, r, u . Assume that P is monic. Then

- $\operatorname{Res}_x(R, r, Q, q) = (-1)^{qr} \operatorname{Res}_x(Q, q, R, r),$
- $\operatorname{Res}_x(R, r, Q.Q_1, q + q_1) = \operatorname{Res}_x(R, r, Q, q)\operatorname{Res}_x(R, r, Q_1, q_1),$
- $\operatorname{Res}_x(R, r, Q + UR, q) = \operatorname{Res}_x(R, r, Q, q)$ if $q \ge u + r$.
- $\operatorname{Res}_x(P, p, Q, q') = \operatorname{Res}_x(P, p, Q, q)$ if $q' \ge q$. So when P is monic of degree p we can use the short notation $\operatorname{Res}_x(P, p, Q)$.
- $\operatorname{Res}_x(P, p, Q + UP) = \operatorname{Res}_x(P, p, Q),$

We recall now the definition of subresultant polynomials. Let d = min(p, q). For any $i, (0 \le i < d)$, the subresultant of P and Q in degree i is the determinant of the square matrix :

$$\begin{pmatrix} a_p & b_q \\ \vdots & \ddots & \vdots & \ddots \\ \vdots & a_p & \vdots & b_q \\ \vdots & \vdots & \vdots & \vdots \\ a_{i+1-(q-i-1)} & a_{i+1} & b_{i+1-(p-i-1)} & b_{i+1} \\ x^{q-i-1}P(x) & \cdots & P(x) & x^{p-i-1}Q(x) & \cdots & Q(x) \end{pmatrix}$$

We denote it by $\operatorname{Sres}_{i,x}(P, p, Q, q)$ or $\operatorname{Sres}_i(P, p, Q, q)$. It is easily shown that we can take $\operatorname{Sres}_i(P, p, Q, q)$ of formal degree *i* and that $\operatorname{Sres}_0(P, p, Q, q) = \operatorname{Res}(P, p, Q, q)$. Moreover each $\operatorname{Sres}_i(P, p, Q, q)$ belongs to the ideal $\langle P, Q \rangle$.

Examples 19 Let p = 3, q = 4, and i = 2 then

Sres_{2,x}(P, 3, Q, 4) =
$$\begin{vmatrix} a_3 & 0 & b_4 \\ a_2 & a_3 & b_3 \\ xP(x) & P(x) & Q(x) \end{vmatrix}$$

Let p = 4, q = 5 and i = 2 then

$$\operatorname{Sres}_{3,x}(P,4,Q,5) = \begin{vmatrix} a_4 & 0 & 0 & b_5 & 0 \\ a_3 & a_4 & 0 & b_4 & b_5 \\ a_2 & a_3 & a_4 & b_3 & b_4 \\ a_1 & a_2 & a_3 & b_2 & b_3 \\ x^2 P(x) & x P(x) & P(x) & x Q(x) & Q(x) \end{vmatrix}$$

The following fact is a particular case of Theorem 80 (page 239) of [1].

Fact 20 Let P be a monic polynomial of degree p and Q_1, Q_2 polynomials of formal degrees q_1, q_2 . Let $Sr_p = \operatorname{Sres}_p(PQ_1, p + q_1, PQ_2, p + q_2)$, let sr_p be the coefficient of degree p of Sr_p . Then $sr_p = \operatorname{Res}(Q_1, q_1, Q_2, q_2)$ and $sr_p \cdot P = Sr_p$.

Proof of Theorem 8 (case n = 2)

Within Context, with n = 2, we consider f_i and g_i as being of formal degree d. We define the formal reciprocal polynomials in degree d, $F_i = x^d f_i(\frac{1}{x})$ and $G_i = x^d g_i(\frac{1}{x})$. We remark that F_i and G_i can be taken of formal degree d for i = 1 and of formal degree d - 1 for i > 1. Moreover F_1 and G_1 are monic, and $F_1G_1 + F_2G_2 = x^{2d}$.

For example with d = 2, $f_1 = 1 + ax + bx^2$, $f_2 = cx + kx^2$, $g_1 = 1 + ex + fx^2$, $g_2 = gx + hx^2$, we have $F_1 = b + ax + x^2$, $F_2 = k + cx$, $G_1 = f + ex + x^2$, $G_2 = h + gx$.

Applying Fact 20, we get

$$sr_d \cdot F_1 = \operatorname{Sres}_d(F_1G_1, 2d, F_1G_2, 2d - 1) \in \mathbf{A}[x].$$

So *srd* satisfies the hypothesis of Lemma 15, with $\ell = 1$.

Applying Lemma 17 we may reason modulo $\sqrt{sr_d \mathbf{B}}$, i.e. we may suppose that $sr_d = 0$ and kill nilpotent elements. Moreover $sr_d = \text{Res}(G_1, d, G_2, d-1)$.

We need the following lemma.

Lemma 21 Let a be the constant coefficient of F_i or G_i . Then $a^{2d} \equiv 0 \mod sr_d$.

Proof E.g., let a_i the constant coefficient of G_i . We have $sr_d = \text{Res}_x(G_1, d, G_2, d-1) = 0$. Moreover $f_1g_1 + f_2g_2 = 1$ gives $F_1G_1 + F_2G_2 = x^{2d}$. Then we get (because G_1 is monic)

$$\begin{aligned} a_1^{2d} &= \operatorname{Res}(G_1, d, x^{2d}, 2d) &= \operatorname{Res}(G_1, d, F_1G_1 + F_2G_2, 2d) \\ &= \operatorname{Res}(G_1, d, F_2G_2, 2d) &= \operatorname{Res}(G_1, d, F_2G_2, 2d - 2) \\ &= \operatorname{Res}(G_1, d, G_2, d - 1) \operatorname{Res}(G_1, d, F_2, d - 1) &\equiv 0 \mod sr_d \end{aligned}$$

In a similar way (because $2d \ge 2d - 2$):

$$a_2^{2d} = \operatorname{Res}(G_2, d-1, x^{2d}, 2d) = \operatorname{Res}(G_2, d-1, F_1G_1 + F_2G_2, 2d)$$

= $\operatorname{Res}(G_2, d-1, F_1G_1, 2d) = \operatorname{Res}(G_2, d-1, G_1, d)\operatorname{Res}(G_2, d-1, F_1, d)$
= 0 mod sr_d

Conclusion: When we consider the case of f_i and g_i with formal degree d, $(1 \le i \le 2)$, any of their coefficients in degree d, let us denote a, verify $a^k \cdot \mathbf{B} \subseteq \mathbf{A}$ for some $k \in \mathbb{N}$ which we are able to clarify according to d.

More precisely the coefficients of f_1 of degree ≥ 1 verify an integral dependence relation of degree $\binom{2d}{d}$ over **A**. Using the proof of Lemma 13 we get $sr_d^k \cdot \mathbf{B} \subseteq \mathbf{A}$ with $k = d\left(\binom{2d}{d} - 1\right)$. Since $a^{2d} \equiv 0 \mod sr_d$ in **A** we get $a^\ell \cdot \mathbf{B} \subseteq \mathbf{A}$, with $\ell = 2d^2\left(\binom{2d}{d} - 1\right)$. E.g., for d = 3, $\ell = 342$.

This gives a first approximation of \mathbf{A}_1 by $\mathbf{A}' = \mathbf{A} + \sqrt{\mathcal{I}}$ where \mathcal{I} is the ideal of \mathbf{B} generated by the coefficients of degree d of f_i 's and g_i 's. Since we are allowed to reason modulo $\sqrt{\mathcal{I}}$, we finish the algorithm by induction on d.

5 Generalization to the case $n \times n$

In this section we generalize the algorithm to the case of a matrix of size $n \times n$.

Resultant ideal and subresultant modules

In this paragraph we consider $C_0, C_1, \ldots, C_r \in \mathbf{A}[x]$ and assume that C_0 is monic of degree d.

For two polynomials P and Q of $\mathbf{A}[x]$, with Q monic we denote by $\operatorname{Rem}_x(P,Q)$ (or $\operatorname{Rem}(P,Q)$ if there is no ambiguity) the remainder of the euclidean division of P by Q. Now we recall the definition of the generalized Sylvester matrix.

Definition 22 The generalized Sylvester matrix associated to the polynomials $C_0, C_1, \ldots, C_r \in \mathbf{A}[x]$, denoted by $\operatorname{Syl}_x(C_0, d, C_1, \ldots, C_r)$ is the matrix with the following columns: $\operatorname{Rem}(C_1, C_0), \ldots, \operatorname{Rem}(C_r, C_0), \ldots, \operatorname{Rem}(x.C_1, C_0), \ldots, \operatorname{Rem}(x.C_r, C_0), \ldots$, $\operatorname{Rem}(x^{d-1}.C_1, C_0), \ldots, \operatorname{Rem}(x^{d-1}.C_r, C_0)$ in the basis $(x^{d-1}, \ldots, x, 1)$.

Fact 23 Let $A_d = \mathbf{A}[x]_d$ be the **A**-module of polynomials of degree $\langle d, with$ basis $(x^{d-1}, \ldots, x, 1)$ and $\varphi : \mathbf{A}^{dr} \longrightarrow A_d$ the **A**-linear map given by the matrix $S = \operatorname{Syl}_x(C_0, d, C_1, \ldots, C_r)$. Then $\langle C_0, \ldots, C_r \rangle \cap A_d = \operatorname{Im} \varphi$.

Example 24 Let $C_0(x) = x^3 + 3x^2 + 4$, $C_1(x) = 4x^2 + 5x + 3$, $C_2(x) = -3x^2 + 2x + 3$, $C_3(x) = 2x^2 - x + 7$ then

$$\operatorname{Syl}_{x}(C_{0}, 3, C_{1}, C_{2}, C_{3}) = \begin{pmatrix} 4 & -3 & 2 & -7 & 11 & -7 & 20 & -27 & -16 \\ 5 & 2 & -1 & -1 & 6 & 5 & -9 & 1 & -1 \\ 3 & 3 & 7 & -16 & 12 & -8 & 28 & -44 & 28 \end{pmatrix}.$$
 (1)

Remark 25 We remark that $Syl_x(C_0, d, C_1, \ldots, C_r)$ is a matrix of d rows and d.r columns. Moreover if r = 1 the determinant of the matrix is equal to the resultant of C_0 and C_1 .

Definition 26 Let M be a matrix in $\mathbf{A}^{m \times n}$, the determinantal ideals $\mathcal{D}_k(M)$ of the matrix M are the ideals generated by the minors of size k of the matrix M, with $0 \leq k \leq \min(m, n)$.

Definition 27 We define the resultant ideal of C_0, C_1, \ldots, C_r , denoted by $\operatorname{Ires}_x(C_0, d, C_1, \ldots, C_r)$: this is $\mathcal{D}_d(\operatorname{Syl}_x(C_0, d, C_1, \ldots, C_r))$.

The importance of the resultant ideal comes from the fact it is equal to the elimination ideal, up to radical.

Lemma 28 Let C_0 be a monic polynomial of degree d. Let \mathcal{I} be the elimination ideal $\langle C_0, C_1, \ldots, C_r \rangle \cap \mathbf{A}$. Then

$$\mathcal{I}^d \subseteq \operatorname{Ires}_x(C_0, d, C_1, \dots, C_r) \subseteq \mathcal{I}.$$

Proof It is clear that $\operatorname{Ires}_x(C_0, d, C_1, \ldots, C_r) \subseteq \mathcal{I}$. Let $S = \operatorname{Syl}_x(C_0, d, C_1, \ldots, C_r)$. Let $y_i \in \mathcal{I} \cap \mathbf{A}$ $(1 \leq i \leq d)$. Then $y_i x^{i-1} \in \mathcal{I} \cap A_d = \operatorname{Im} S$ (Fact 23). This means that $\operatorname{Diag}(y_1, \ldots, y_d) = SH$ for some matrix H. Thus, by the Binet-Cauchy formula, $y_1 y_2 \cdots y_d$ (the determinant of $\operatorname{Diag}(y_1, \ldots, y_d)$) is in $\operatorname{Ires}_x(C_0, d, C_1, \ldots, C_r)$.

Lemma 29

1. Let $P \in \langle C_0, C_1, \ldots, C_r \rangle$. Then

$$\operatorname{Res}_x(C_0, d, P) \in \operatorname{Ires}_x(C_0, d, C_1, \dots, C_r).$$

2. (conjecture) More generally consider the "generic" case where the coefficients of C_0 , C_1, \ldots, C_r are indeterminates over a ring **C**. So $\mathbf{A} = \mathbf{C}$ [coeffs of C'_is]. Then

$$\operatorname{Ires}_x(C_0, d, C_1, \dots, C_r) = \langle C_0, C_1, \dots, C_r \rangle \cap \mathbf{A}.$$

Proof

1) follows from 2): since $\operatorname{Res}_x(C_0, d, P, p)$ belongs to $\langle C_0, C_1, \ldots, C_r \rangle \cap \mathbf{A}$ in the generic case, it can be expressed as a member of $\operatorname{Ires}_x(C_0, d, C_1, \ldots, C_r)$ in the generic case. It remains to specialize this result.

Since we did not find a proof of 2) we give also a direct proof of 1).

For each k < d we can write $Px^k = C_0Q_k + \operatorname{Rem}_x(Px^k, C_0)$. The remainder is in $\langle C_0, \ldots, C_r \rangle \cap \mathbf{A}[x]_d$. So it is a linear combination of the columns of S = $\operatorname{Syl}_x(C_0, d, C_1, \ldots, C_r)$. So $\operatorname{Syl}_x(C_0, d, P) = ST$ for a suitable matrix T. We conclude by the Binet-Cauchy formula.

We recall now the definition of the *subresultant modules*.

Let k < d. We make the following transformations in the Sylvester matrix $Syl_x(C_0, d, C_1, \ldots, C_r)$:

- we suppress rows with degree < k,
- we suppress columns $\operatorname{Rem}(x^j.C_i,C_0)$ when j > d-k-1,
- we replace the last row (corresponding to degree k) by the sequence $\operatorname{Rem}(C_1, C_0)$, ..., $\operatorname{Rem}(C_r, C_0)$, $\operatorname{Rem}(x.C_1, C_0)$, ..., $\operatorname{Rem}(x.C_r, C_0)$, ..., $\operatorname{Rem}(x^{d-k-1}.C_1, C_0)$, ..., $\operatorname{Rem}(x^{d-k-1}.C_r, C_0)$.

Then we obtain a matrix of size $(d-k) \times (d-k) \cdot r$ denoted $\text{Syl}_{k,x}(C_0, d, C_1, \dots, C_r)$.

Example 30 We consider the matrix $Syl_x(C_0, 3, C_1, C_2, C_3)$ of Example 24 and k = 1. If we suppress rows with degree < 1, and columns $Rem(x^j, C_i, C)$ when j > d - k - 1 = 1we obtain the matrix

Finally we replace the last row by the vector $(C_1, C_2, C_3, r_1, r_2, r_3)$ with $r_1 = \text{Rem}(xC_1, C_0)$, $r_2 = \text{Rem}(x.C_2, C_0)$, $r_3 = \text{Rem}(x.C_3, C_0)$. Then

In a similar way

$$\operatorname{Syl}_{0,x}(C_0, 3, C_1, C_2, C_3) = \begin{pmatrix} 4 & -3 & 2 & -7 & 11 & -7 & 20 & -27 & -16 \\ 5 & 2 & -1 & -1 & 6 & 5 & -9 & 1 & -1 \\ C_1 & C_2 & C_3 & r_1 & r_2 & r_3 & r_1' & r_2' & r_3' \end{pmatrix}.$$
 (2)

with $r'_1 = \text{Rem}(x^2.C_1, C_0), r'_2 = \text{Rem}(x^2.C_2, C_0)$ and $r'_3 = \text{Rem}(x^2.C_3, C_0)$

Definition 31 For k < d, the subresultant module of degree k associated to the polynomials C_0, C_1, \ldots, C_r , denoted by $\operatorname{Mres}_{k,x}(C_0, d, C_1, \ldots, C_r)$ is the A-module generated by the maximal minors of $\operatorname{Syl}_{k,x}(C_0, d, C_1, \ldots, C_r)$.

Note that the generators of this module are polynomials with formal degree k. Remark also that comparing matrices (1) and (2) we obtain the equality

$$Mres_{0,x}(C_0, d, C_1, \dots, C_r) = Ires_x(C_0, d, C_1, \dots, C_r).$$

Lemma 32 If P is monic of degree p, then

$$Mres_{p,x}(P.C_0, p + d, P.C_1, ..., P.C_r) = Ires_x(C_0, d, C_1, ..., C_r) \cdot P.$$

First we give an example.

Example 33 Let us first start by an example for a polynomial P of degree 1. Let P(x) = x-2, and C_0 , C_1 , C_2 , C_3 as in Example 24. The matrix $Syl_{1,x}(PC_0, 3+1, PC_1, PC_2, PC_3)$ is equal to

$$\begin{pmatrix} 4 & -3 & 2 & -7 & 11 & -7 & 20 & -27 & -16 \\ -3 & 8 & -5 & 13 & 28 & 19 & -49 & 55 & 31 \\ PC_1 & PC_2 & PC_3 & Pr_1 & Pr_2 & Pr_3 & Pr_1' & Pr_2' & Pr_3' \end{pmatrix}$$

We subtract from the second row (-2) times the first, we obtain the matrix

$$\begin{pmatrix} 4 & -3 & 2 & -7 & 11 & -7 & 20 & -27 & -16 \\ 5 & 2 & -1 & -1 & 6 & 5 & -9 & 1 & -1 \\ PC_1 & PC_2 & PC_3 & Pr_1 & Pr_2 & Pr_3 & Pr'_1 & Pr'_2 & Pr'_3 \end{pmatrix}.$$
 (3)

Comparing this matrix to $\operatorname{Syl}_{0,x}(C_0, 3, C_1, C_2, C_3)$ given in Equation (2) we see that it is the same one, except for the last row which is multiplied by P. In particular, any maximal minor of the matrix $\operatorname{Syl}_{1,x}(PC_0, 3 + 1, PC_1, PC_2, PC_3)$ can be written as a product of P and a maximal minor of $\operatorname{Syl}_x(C_0, 3, C_1, C_2, C_3)$, for instance

$$\begin{vmatrix} 4 & -3 & 2 \\ 5 & 2 & -1 \\ PC_1 & PC_2 & PC_3 \end{vmatrix} = P \begin{vmatrix} 4 & -3 & 2 \\ 5 & 2 & -1 \\ C_1 & C_2 & C_3 \end{vmatrix} = P \begin{vmatrix} 4 & -3 & 2 \\ 5 & 2 & -1 \\ 3 & 3 & -7 \end{vmatrix}.$$

This implies $\operatorname{Mres}_{1,x}(P.C_0, 3+1, P.C_1, PC_2, P.C_3) = \operatorname{Ires}_x(C_0, 3, C_1, C_2, C_3) \cdot P.$

Proof of Lemma 32 Let us first demonstrate the relation for a polynomial P of degree 1. Let P = x + s, and $M = \operatorname{Syl}_{1,x}(PC_0, d + 1, PC_1, \ldots, PC_r)$. By subtracting iteratively from each row s times the preceding row, starting at the second one and finishing at the last but one we obtain the same rows as those of the matrix $\operatorname{Syl}_x(C_0, d, C_1, \ldots, C_r)$. Except for the last row, where we have the vector $(\operatorname{Rem}(PC_1, PC_0), \ldots, \operatorname{Rem}(PC_r, PC_0), \ldots, \operatorname{Rem}(x.C_1P, PC_0), \ldots, \operatorname{Rem}(x.PC_r, PC_0), \ldots, \operatorname{Rem}(x^{d-1}.PC_1, PC_0), \ldots, \operatorname{Rem}(x^{d-1}.C_rP, PC_0))$. So the last row is merely multiplied by P. It follows that any minor of size d can be written as a product of P and a minor of M. We conclude that

$$Mres_{1,x}(P.C_0, d+1, P.C_1, \dots, P.C_r) = Mres_{0,x}(C_0, d, C_1, \dots, C_r) \cdot P.$$

A similar computation shows that

$$Mres_{k+1,x}(P.C_0, d+1, P.C_1, \dots, P.C_r) = Mres_{k,x}(C_0, d, C_1, \dots, C_r) \cdot P.$$

Finally, for P of degree > 1 we obtain the result by iteration, since P can be written as a product of linear factors in the splitting algebra of P. \Box

We need the following lemma.

Lemma 34 Let E_0, E_1, \ldots, E_r be polynomials in $\mathbf{A}[x]$ such that $C_0E_0 + C_1E_1 + \cdots + C_rE_r = x^{\ell}$. Assume that $\operatorname{Ires}_x(C_0, d, C_1, \ldots, C_r) = 0$. Let c_i be the constant coefficient of C_i .

- 1. We have $c_0^{\ell} = 0$.
- 2. Consider $i \in \{1, ..., r\}$
 - (a) We have $c_i^{d\ell} = 0$.
 - (b) Assume that E_0 is monic of degree e, E_1, \ldots, E_r have formal degrees $\leq e$ and C_i have formal degrees < d (so $\ell = e + d$). Assume also that the conjecture in Lemma 29 is true. Then $c_i^{\ell} = 0$.

Proof 1) We apply Lemma 29 1). Since $x^{\ell} \in \langle C_0, \ldots, C_r \rangle$ we get

$$c_0^{\ell} = \operatorname{Res}(x^{\ell}, \ell, C_0) = \pm \operatorname{Res}(C_0, d, x^{\ell}) \in \operatorname{Ires}_x(C_0, d, C_1, \dots, C_r).$$

2a) We have $c_i^{\ell} = \operatorname{Res}(x^{\ell}, \ell, C_i, d_i) = \pm \operatorname{Res}(C_i, d_i, x^{\ell}, \ell) \in \mathcal{I} = \langle C_0, \dots, C_r \rangle \cap \mathbf{A}$ and $\mathcal{I}^d \subseteq \operatorname{Ires}_x(C_0, d, C_1, \dots, C_r).$

2b) We apply Lemma 29 2). Let $B = C_0 E_0 + C_1 E_1 + \cdots + C_r E_r$. In the generic case B is monic of degree ℓ and $\operatorname{Res}(B, \ell, C_i)$ is in the elimination ideal $\langle C_0, \ldots, C_r \rangle \cap \mathbf{A}$. This implies it is in the resultant ideal $\operatorname{Ires}(C_0, d, C_1, \ldots, C_r)$. After specialization, we get $B = x^{\ell}$ and we deduce $c_i^{\ell} = \operatorname{Res}(x^{\ell}, \ell, C_i) = 0$.

Proof of Theorem 8

Within Context, we consider f_i 's and g_i 's as being of formal degree d. We define the formal reciprocal polynomials in degree d, $F_i = x^d f_i(\frac{1}{x})$ and $G_i = x^d g_i(\frac{1}{x})$. By Lemma 32 we have

$$\operatorname{Ires}(G_1, d, G_2, \dots, G_n) \cdot F_1 = \operatorname{Mres}_d(G_1F_1, d, G_2F_1, \dots, G_nF_1) \subseteq \mathbf{A}[x].$$

finish the algorithm by induction on d.

So, applying Lemma 17 we are allowed to reason modulo $\operatorname{Ires}(G_1, d, G_2, \ldots, G_n)$, i.e, we can suppose that $\operatorname{Ires}_x(G_1, d, G_2, \ldots, G_n) = 0$. In this situation, since $F_1G_1 + \ldots + F_nG_n = x^{2d}$, the coefficients of degree d of g'_is satisfy Lemma 34. We conclude that any of the coefficients of g_i 's in degree d, let us denote a, verify $a^k \cdot \mathbf{B} \subseteq \mathbf{A}$ for some $k \in \mathbb{N}$ which we are able to clarify according to d. By symmetry, we get the same result for any of the coefficients of f_i 's in degree d. This gives a first approximation of \mathbf{A}_1 by $\mathbf{A}' = \mathbf{A} + \sqrt{\mathcal{I}}$ where \mathcal{I} is the ideal of \mathbf{B} generated by the coefficients of degree d of f_i 's and g_i 's. Since we are allowed to reason modulo $\sqrt{\mathcal{I}}$, we

References

- [1] F. Apéry, J.-P. Joualoulou, Elimination: Le cas d'une variable, Hermann (2006). 5, 6
- [2] T. Coquand, On Seminormality, J. Algebra **305** (2006) 577–584. 1, 2
- [3] T. Coquand, H. Persson, Valuations and Dedeking Prague theorem, J. Pure Appl. Algebra 155 (2001) 121–129. 3
- [4] D. L. Costa, Seminormality and projective module, in: Séminaire d'algèbre Dubreil et Marie-Pole Mallivain, 34me année, vol. 924, 1982.
- [5] H. Edwards, Divisor Theory, Birkhauser, Boston, MA, 1989. 3
- [6] H. Lombardi, Hidden constructions in abstract algebra. (1) Integral dependence relations, J. Pure Appl. Agebra 167 (2002) 259–267. 3
- [7] R. MINES, F. RICHMAN, W. RUITENBURG A Course in Constructive Algebra. Universitext. Springer-Verlag, (1988). 2
- [8] R. Swan, On seminormality, J. Algebra 67 (1980) 210–229 1
- [9] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa 24 (1970) 585–595. 1