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Abstract

We give an algorithm for an explicit implementation of Traverso-Swan’s theorem,
saying that a reduced ring A is seminormal if and only if the canonical map: PicA →
PicA[x] is an isomorphism.
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1 Introduction

In [2] T. Coquand obtained a constructive proof of the fact that a reduced ring A is
seminormal if and only if the canonical map:

PicA → PicA[x]

is an isomorphism. This theorem is due to Swan [8], generalizing a result of Traverso [9].

We recall [8] that a ring A is seminormal if when b2 = c3 then there exists a ∈ A such
that b = a3 and c = a2. This is a remarkably simple condition. Similarly the statement
that the canonical map PicA → PicA[x] is an isomorphism can also be formulated in an
elementary way. Swan’s original definition includes that A is reduced, but, as noticed by
Costa [4], reduceness follows from seminormality: if d2 = 0 then d2 = 03 = 0 and so there
exists a ∈ A such that a3 = d and a2 = 0. So d = 0.

When A ⊆ B are commutative rings, the seminormal closure of A in B is the smallest
subring A1 of B containing A such that if x ∈ B, x2 ∈ A1 and x3 ∈ A1 then x ∈ A1.

In this paper, we give an algorithm for an explicit implementation of Traverso-Swan’s
theorem. More precisely let C be a reduced ring and f1, . . . , fn, g1, . . . , gn polynomials in
C[X] such that f1 ·g1 + · · ·+fn ·gn = 1, f1(0) = g1(0) = 1 and fi(0) = gi(0) = 0 for i ≥ 2.
Let A be the ring generated by the coefficients of mij = fi× gj and B the ring generated
by the coefficients of fi and gj. We construct finitely many elements c1, . . . , cm ∈ B such
that c2

i+1, c
3
i+1 ∈ A[c1, . . . , ci] and B = A[c1, . . . , cm].
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2 First steps for Traverso-Swan’s theorem on semi-

normality

In this section we recall some steps in the constructive method of T. Coquand [2].
To any commutative ring A one associates the group of projective modules of rank

one equipped with tensor product as group operation. This is the Picard group PicA of
the ring A. We can represent any finitely generated projective module P over A as the
image of an n × n idempotent matrix M . The module P ' Im M is of rank one if and
only if det(In + xM) = 1 + x. Equivalently Tr M = 1 and any 2 × 2 minor of M equals
0. If M ∈ An×n represents a projective A-module P of rank one, we use the notation

M 'A I1,n =

(
1 01,n−1

0n−1,1 0n−1,n−1

)
for expressing that P is a free module over A. Precisely we have:

Lemma 1 Let M be a projection matrix of rank one over a ring A. Then M 'A I1,n if
and only if there exist fi, gj ∈ A such that mij = figj for each i, j. If we write f the
column vector (fi) and g the row vector (gj) this can be written as M = fg. Furthermore
the column vector f and the row vector g are uniquely defined up to a unit by these
conditions: if we have other vectors f ′ and row g′ such that M = f ′g′ then there exists a
unit u of A such that f = uf ′ and g′ = ug.

Note that in the reverse way when we have a column vector f and a row vector g, if
gf = 1, then the matrix M = fg is a projection matrix of rank 1.

Theorem 2 (Traverso-Swan-Coquand)
Let k be a positive integer. A reduced ring A is seminormal if and only if the canonical
map PicA → PicA[x1, . . . , xk] is an isomorphism.

The “only if part” is based on a Schanuel example. The proof of the “if part” is much
more difficult. In this paper we give an algorithm for the following particular case (k = 1).

Theorem 3 Le A be a seminormal ring. Then the canonical map PicA → PicA[x] is
an isomorphism.

The first author will propose in a following paper a direct algorithmic proof of the
implication “A seminormal implies A[x] seminormal”. Combined with the present paper
this will give an algorithm for the general case (Theorem 2).

First steps in Coquand’s proof are based on the following lemmas.

Lemma 4 If A is a reduced ring, then the canonical map PicA → PicA[x] is an iso-
morphism if and only if for any n × n projection matrix M(x) = (mij(x)) of rank one
over A[x] such that M(0) = I1,n, there exist fi, gj ∈ A[x] such that f(0) = g(0) = 1 and
mij = figj.

Let us recall that a ring is zero-dimensional and reduced if and only if every element
a has a quasi-inverse, i.e. an element a• such that

a2a• = a, and a(a•)2 = a•.

Such a ring is often called a Von Neuman regular ring.
In constructive mathematics we say that a ring is a discrete field if we have the

disjunction “any element is zero or invertible” in an explicit way (see [7] for basic concepts
of constructive algebra). A discrete field is zero-dimensional and reduced.
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Lemma 5 If A is a reduced ring then A has a reduced zero-dimensional extension.

For Lemma 5, if A is an integral domain, we can take the fraction field of A.

Lemma 6 If C is a reduced zero-dimensional ring, then any finitely generated projective
module of rank one over C[x] is free.

In case C is a discrete field we can use the following procedure for Lemma 6. We start
with a projection matrix of rank one M(x) = (mij) such that M(0) = I1,n. We take for
f1 the gcd of the first row of M in C[x] with f1(0) = 1. Then gj =

m1j

f1
, fi = mi1

g1
.

Since lemmas 4, 5 and 6 are relatively easy, the more difficult part in the proof of
Theorem 3 is given by Theorem 8 below.

Context: Let B be a reduced ring and fi, gi (i = 1, . . . , n) polynomials in B[x] such that∑
figi = 1, f1(0) = g1(0) = 1 and fi(0) = gi(0) = 0 for i ≥ 2. Let mij(x) = fi(x)gj(x).

Let A be the ring generated by the coefficients of mij’s. We assume also that B is
generated by the coefficients of fi and gi. We denote by A1 the seminormal closure of A
in B.

Remark 7 Let us explain how to come within Context if we start with a projection matrix
of rank one M(x) = (mij) such that M(0) = I1,n. Let A be the ring generated by the coef-
ficients of mij’s. We consider a reduced zero-dimensional ring C containing A (Lemma
5). We find polynomials fi and gi in C[x] such that f1(0) = 1 = g1(0) and mij = figj for
any i, j (Lemma 6). Then B is the ring generated by the coefficients of fi’s and gi’s. As
already explained, in case the matrix has its coefficients in an integral ring this procedure
is particularly simple.

Using Lemma 4 and the previous remark (which is based on constructive proofs of
Lemmas 5 and 6) it is clear that Theorem 3 is a consequence of the following more precise
statement.

Theorem 8 Within Context, A1 = B. More precisely there are finitely many ele-
ments c1, . . . , cm ∈ B such that c2

i+1, c3
i+1 ∈ A[c1, . . . , ci] (i ∈ {1, . . . ,m − 1}) and

B = A[c1, . . . , cm].

Lemma 9 Within Context, the coefficients of fi and gj are integral over A. So B is
finite as an A-module .

Indeed, if u is a coefficient of fi, it follows from figj ∈ A[x] that ugj(0) is integral over
A for all j. This is a consequence of Kronecker’s theorem [3, 5, 6] that states that if
P1P2 = Q ∈ A[x] then any product u1u2, where ui is a coefficient of Pi, is integral over
the ring generated by the coefficients of Q. Since g1(0) = 1, this implies that u is integral
over A.

In the sequel of the paper we explain how to get algorithmically Theorem 8.

In section 3 we give some preliminary lemmas for this construction. In section 4 we
give the algorithm for a 2 × 2 projection matrix of rank one. In section 5 we give the
general algorithm for an n× n projection matrix of rank one.
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3 Preliminary Lemmas

Lemma 10 Let c ∈ B and m ∈ N such that cn ∈ A1 for any n ≥ m, then c ∈ A1.

Proof For example let m = 24 = 16. We have following:
since c16 and c24 ∈ A1 then c8 ∈ A1, since c18 and c27 ∈ A1 then c9 ∈ A1, and so on for
any n ≥ 8, an ∈ A1. Briefly we can pass from 24 to 23. In the same way we pass from 23

to 22, and from 22 to 2. Thus c2 and c3 ∈ A1, so c ∈ A1. 2

Lemma 11 A[coefficients of f1] = B

Proof Let B′ be the ring generated by A and the coefficients of f1. We have m1j = f1gj,
f1(0) = 1. Suppose that deg m1j ≤ d. We divide m1j by f1 by ascending powers, we
obtain m1j = qf1 +xd+1h, q, h ∈ A[x]. Necessarily h = 0, q = gj and thus the coefficients
of gj are polynomial combinations of those of m1j and f1. It follows that gj ∈ B′[x]. Since
g1 ∈ B′[x] we obtain in a similar way that fi ∈ B′[x]. So B = B′. 2

Example 12 Let n = 2, f1 = 1+ax+bx2, f2 = cx+dx2, g1 = 1+ex+fx2, g2 = gx+hx2,
m11 = f1g1, m12 = f1g2, m21 = f2g1, m22 = f2g2. We have B = A[a, b], and a, b are
integral over A.

Lemma 13 If a ∈ A and af1 ∈ A[x] then there exists k ∈ N such that akB ⊆ A.

Proof We have B = A[b1, . . . , br] where f1 = 1 + b1x + · · · + brx
r (Lemma 11). Every

bi is integral over A. Let di be the degree of an integral dependence relation of bi. Then
B =

∑
Abδ, with bδ = bδ1

1 . . . bδr
r , 0 ≤ δi < di. (δ means δ1, . . . , δr and bδ is a pure

notation). If af1 ∈ A[x] and
∑

(di − 1) = k, then akbδ = (ab1)
δ1 · · · (abr)

δr · ak−
P

δi with
k −

∑
δi ≥ 0. So akbδ ∈ A. Thus akB ⊆ A. 2

Lemma 14 If a ∈ A and amB ⊆ A for some m ∈ N, then aB ⊆ A1.

Proof For b ∈ B we have (ab)mB ⊆ A. This implies that (ab)n ∈ A1 for any n ≥ m.
Applying Lemma 10, we get aB ⊆ A1. 2

Lemma 15 Let a ∈ B and ` ∈ N such that a`f1 ∈ A[x], then
√

aB ⊆ A1.

Proof This follows from Lemma 13 and Lemma 14. 2

Fact 16 Let C ⊆ B be two rings and J an ideal of B. Then C + J is a ring, J is an
ideal of C+J , C∩J is an ideal of C, and the isomorphism of C-modules (C+J )/J '
C/(C ∩ J ) is an isomorphism of rings.

Lemma 17 With Lemma 15 hypotheses, we have A +
√

aB ⊆ A1. Let J =
√

aB,

Ã = (A + J )/J ⊆ A1/J and B̃ = B/J ,

then A1/J is the seminormal closure of Ã in B̃.

Proof Let C be the seminormal closure of Ã in B̃. We write C = A2/J with J ⊆ A2 as

a subring of B/J . It is clear that A1 ⊆ A2. Let x ∈ A2 and assume first that x̄2, x̄3 ∈ Ã.
Then x2, x3 ∈ A1, so x ∈ A1. Reasoning inductively, we replace A by A[x]. Since any
element in C can be reached in a finite number of steps, we see that A2 = A1. 2

The concrete consequence of Lemma 17 for our computation is that, whenever we find
an a ∈ B such that a`f1 ∈ A[x] for some integer `, we are allowed to replace A and B by

Ã and B̃. Indeed, it is clear that hypotheses of Context remain true for these rings, and
if forthcoming computations show that the seminormal closure of Ã in B̃ is equal to B̃,
Lemma 17 says that A1 = B.

In short “we are allowed to continue the computation modulo J ”.
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4 The Case 2× 2

Resultant and subresultants

For two polynomials P = apx
p + · · ·+ a0 and Q = bqx

q + · · ·+ b0 of formal degrees p and
q, we denote by Resx(P, p, Q, q) the resultant of P and Q; that is to say the determinant
of the Sylvester Matrix:

Sylx(P, p, Q, q) =



a0 b0

a1 a0 b1 b0
... a1

. . . b1
. . .

...
. . . . . .

...
. . . b0

ap
. . . a0

... b1

ap a1 bq

. . .
... bq

...
. . .

...
. . .

ap bq


︸ ︷︷ ︸

q columns

︸ ︷︷ ︸
p columns

First we recall well known identities (see e.g., [1] chapter 3).

Fact 18 Let P, Q, Q1, R, U ∈ A[x] of formal degrees p, q, q1, r, u. Assume that P is monic.
Then

• Resx(R, r, Q, q) = (−1)qrResx(Q, q, R, r),

• Resx(R, r, Q.Q1, q + q1) = Resx(R, r, Q, q)Resx(R, r, Q1, q1),

• Resx(R, r, Q + UR, q) = Resx(R, r, Q, q) if q ≥ u + r.

• Resx(P, p, Q, q′) = Resx(P, p, Q, q) if q′ ≥ q. So when P is monic of degree p we can
use the short notation Resx(P, p, Q).

• Resx(P, p, Q + UP ) = Resx(P, p, Q),

We recall now the definition of subresultant polynomials. Let d = min(p, q) . For any
i, (0 ≤ i < d), the subresultant of P and Q in degree i is the determinant of the square
matrix : 

ap bq
...

. . .
...

. . .
... ap

... bq
...

...
...

...
ai+1−(q−i−1) ai+1 bi+1−(p−i−1) bi+1

xq−i−1P (x) · · · · · · P (x) xp−i−1Q(x) · · · · · · Q(x)


︸ ︷︷ ︸

(q−i) columns

︸ ︷︷ ︸
(p−i) columns

We denote it by Sresi,x(P, p, Q, q) or Sresi(P, p, Q, q). It is easily shown that we can take
Sresi(P, p, Q, q) of formal degree i and that Sres0(P, p, Q, q) = Res(P, p, Q, q). Moreover
each Sresi(P, p, Q, q) belongs to the ideal 〈P, Q〉.
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Examples 19 Let p = 3, q = 4, and i = 2 then

Sres2,x(P, 3, Q, 4) =

∣∣∣∣∣∣
a3 0 b4

a2 a3 b3

xP (x) P (x) Q(x)

∣∣∣∣∣∣ .

Let p = 4, q = 5 and i = 2 then

Sres3,x(P, 4, Q, 5) =

∣∣∣∣∣∣∣∣∣∣
a4 0 0 b5 0
a3 a4 0 b4 b5

a2 a3 a4 b3 b4

a1 a2 a3 b2 b3

x2P (x) xP (x) P (x) xQ(x) Q(x)

∣∣∣∣∣∣∣∣∣∣
.

The following fact is a particular case of Theorem 80 (page 239) of [1].

Fact 20 Let P be a monic polynomial of degree p and Q1, Q2 polynomials of formal degrees
q1, q2. Let Srp = Sresp(PQ1, p + q1, PQ2, p + q2), let srp be the coefficient of degree p of
Srp. Then srp = Res(Q1, q1, Q2, q2) and srp · P = Srp.

Proof of Theorem 8 (case n = 2)

Within Context, with n = 2, we consider fi and gi as being of formal degree d. We define
the formal reciprocal polynomials in degree d, Fi = xdfi(

1
x
) and Gi = xdgi(

1
x
). We remark

that Fi and Gi can be taken of formal degree d for i = 1 and of formal degree d − 1 for
i > 1. Moreover F1 and G1 are monic, and F1G1 + F2G2 = x2d.

For example with d = 2, f1 = 1 + ax + bx2, f2 = cx + kx2, g1 = 1 + ex + fx2,
g2 = gx + hx2, we have F1 = b + ax + x2, F2 = k + cx, G1 = f + ex + x2, G2 = h + gx.

Applying Fact 20, we get

srd · F1 = Sresd(F1G1, 2d, F1G2, 2d− 1) ∈ A[x].

So srd satisfies the hypothesis of Lemma 15, with ` = 1.

Applying Lemma 17 we may reason modulo
√

srdB, i.e. we may suppose that srd = 0
and kill nilpotent elements. Moreover srd = Res(G1, d, G2, d− 1).

We need the following lemma.

Lemma 21 Let a be the constant coefficient of Fi or Gi. Then a2d ≡ 0 mod srd.

Proof E.g., let ai the constant coefficient of Gi. We have srd = Resx(G1, d, G2, d−1) = 0.
Moreover f1g1 + f2g2 = 1 gives F1G1 + F2G2 = x2d. Then we get (because G1 is monic)

a2d
1 = Res(G1, d, x2d, 2d) = Res(G1, d, F1G1 + F2G2, 2d)

= Res(G1, d, F2G2, 2d) = Res(G1, d, F2G2, 2d− 2)

= Res(G1, d, G2, d− 1)Res(G1, d, F2, d− 1) ≡ 0 mod srd

In a similar way (because 2d ≥ 2d− 2):

a2d
2 = Res(G2, d− 1, x2d, 2d) = Res(G2, d− 1, F1G1 + F2G2, 2d)

= Res(G2, d− 1, F1G1, 2d) = Res(G2, d− 1, G1, d)Res(G2, d− 1, F1, d)

≡ 0 mod srd

2



An Algorithm for the Traverso-Swan Theorem 7

Conclusion: When we consider the case of fi and gi with formal degree d, (1 ≤ i ≤ 2),
any of their coefficients in degree d, let us denote a, verify ak · B ⊆ A for some k ∈ N
which we are able to clarify according to d.
More precisely the coefficients of f1 of degree ≥ 1 verify an integral dependence relation of
degree

(
2d
d

)
over A. Using the proof of Lemma 13 we get srk

d ·B ⊆ A with k = d
((

2d
d

)
− 1

)
.

Since a2d ≡ 0 mod srd in A we get a` ·B ⊆ A, with ` = 2d2
((

2d
d

)
− 1

)
. E.g., for d = 3,

` = 342.
This gives a first approximation of A1 by A′ = A+

√
I where I is the ideal of B generated

by the coefficients of degree d of fi’s and gi’s. Since we are allowed to reason modulo
√
I,

we finish the algorithm by induction on d.

5 Generalization to the case n× n

In this section we generalize the algorithm to the case of a matrix of size n× n.

Resultant ideal and subresultant modules

In this paragraph we consider C0, C1, . . . , Cr ∈ A[x] and assume that C0 is monic of
degree d.

For two polynomials P and Q of A[x], with Q monic we denote by Remx(P, Q) (or
Rem(P, Q) if there is no ambiguity) the remainder of the euclidean division of P by Q.
Now we recall the definition of the generalized Sylvester matrix.

Definition 22 The generalized Sylvester matrix associated to the polynomials
C0, C1, . . . , Cr ∈ A[x], denoted by Sylx(C0, d, C1, . . . , Cr) is the matrix with the follow-
ing columns: Rem(C1, C0), . . . , Rem(Cr, C0), . . . , Rem(x.C1, C0), . . . , Rem(x.Cr, C0),
. . . , Rem(xd−1.C1, C0), . . . , Rem(xd−1.Cr, C0) in the basis (xd−1, . . . , x, 1).

Fact 23 Let Ad = A[x]d be the A-module of polynomials of degree < d, with ba-
sis (xd−1, . . . , x, 1) and ϕ : Adr −→ Ad the A-linear map given by the matrix S =
Sylx(C0, d, C1, . . . , Cr). Then 〈C0, . . . , Cr〉 ∩ Ad = Im ϕ.

Example 24 Let C0(x) = x3 + 3x2 + 4, C1(x) = 4x2 + 5x + 3, C2(x) = −3x2 + 2x + 3,
C3(x) = 2x2 − x + 7 then

Sylx(C0, 3, C1, C2, C3) =

 4 −3 2 −7 11 −7 20 −27 −16
5 2 −1 −1 6 5 −9 1 −1
3 3 7 −16 12 −8 28 −44 28

 . (1)

Remark 25 We remark that Sylx(C0, d, C1, . . . , Cr) is a matrix of d rows and d.r
columns. Moreover if r = 1 the determinant of the matrix is equal to the resultant of
C0 and C1.

Definition 26 Let M be a matrix in Am×n, the determinantal ideals Dk(M) of the matrix
M are the ideals generated by the minors of size k of the matrix M , with 0 ≤ k ≤
min(m,n).

Definition 27 We define the resultant ideal of C0, C1, . . . , Cr, denoted by
Iresx(C0, d, C1, . . . , Cr): this is Dd(Sylx(C0, d, C1, . . . , Cr)).
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The importance of the resultant ideal comes from the fact it is equal to the elimination
ideal, up to radical.

Lemma 28 Let C0 be a monic polynomial of degree d. Let I be the elimination ideal
〈C0, C1, . . . , Cr〉 ∩A. Then

Id ⊆ Iresx(C0, d, C1, . . . , Cr) ⊆ I.

Proof It is clear that Iresx(C0, d, C1, . . . , Cr) ⊆ I. Let S = Sylx(C0, d, C1, . . . , Cr). Let
yi ∈ I ∩ A (1 ≤ i ≤ d). Then yix

i−1 ∈ I ∩ Ad = Im S (Fact 23). This means that
Diag(y1, . . . , yd) = SH for some matrix H. Thus, by the Binet-Cauchy formula, y1y2 · · · yd

(the determinant of Diag(y1, . . . , yd)) is in Iresx(C0, d, C1, . . . , Cr). 2

Lemma 29

1. Let P ∈ 〈C0, C1, . . . , Cr〉. Then

Resx(C0, d, P ) ∈ Iresx(C0, d, C1, . . . , Cr).

2. (conjecture) More generally consider the “generic” case where the coefficients of C0,
C1, . . . , Cr are indeterminates over a ring C. So A = C[coeffs of C ′

is]. Then

Iresx(C0, d, C1, . . . , Cr) = 〈C0, C1, . . . , Cr〉 ∩A.

Proof
1) follows from 2): since Resx(C0, d, P, p) belongs to 〈C0, C1, . . . , Cr〉 ∩A in the generic
case, it can be expressed as a member of Iresx(C0, d, C1, . . . , Cr) in the generic case. It
remains to specialize this result.
Since we did not find a proof of 2) we give also a direct proof of 1).
For each k < d we can write Pxk = C0Qk + Remx(Pxk, C0). The remainder
is in 〈C0, . . . , Cr〉 ∩ A[x]d. So it is a linear combination of the columns of S =
Sylx(C0, d, C1, . . . , Cr). So Sylx(C0, d, P ) = ST for a suitable matrix T . We conclude
by the Binet-Cauchy formula. 2

We recall now the definition of the subresultant modules.
Let k < d. We make the following transformations in the Sylvester matrix

Sylx(C0, d, C1, . . . , Cr):

• we suppress rows with degree < k,

• we suppress columns Rem(xj.Ci, C0) when j > d− k − 1,

• we replace the last row (corresponding to degree k) by the sequence Rem(C1, C0),
. . . , Rem(Cr, C0), Rem(x.C1, C0), . . . , Rem(x.Cr, C0), . . . , Rem(xd−k−1.C1, C0), . . . ,
Rem(xd−k−1.Cr, C0).

Then we obtain a matrix of size (d− k)× (d− k).r denoted Sylk,x(C0, d, C1, . . . , Cr).

Example 30 We consider the matrix Sylx(C0, 3, C1, C2, C3) of Example 24 and k = 1.
If we suppress rows with degree < 1, and columns Rem(xj.Ci, C) when j > d− k − 1 = 1
we obtain the matrix (

4 −3 2 −7 11 −7
5 2 −1 −1 6 5

)
.
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Finally we replace the last row by the vector (C1, C2, C3, r1, r2, r3) with r1 = Rem(xC1, C0),
r2 = Rem(x.C2, C0), r3 = Rem(x.C3, C0). Then

Syl1,x(C0, d, C1, C2, C3) =

(
4 −3 2 −7 11 −7
C1 C2 C3 r1 r2 r3

)
.

In a similar way

Syl0,x(C0, 3, C1, C2, C3) =

 4 −3 2 −7 11 −7 20 −27 −16
5 2 −1 −1 6 5 −9 1 −1
C1 C2 C3 r1 r2 r3 r′1 r′2 r′3

 . (2)

with r′1 = Rem(x2.C1, C0), r′2 = Rem(x2.C2, C0) and r′3 = Rem(x2.C3, C0)

Definition 31 For k < d, the subresultant module of degree k associated to the polyno-
mials C0, C1, . . . , Cr, denoted by Mresk,x(C0, d, C1, . . . , Cr) is the A-module generated by
the maximal minors of Sylk,x(C0, d, C1, . . . , Cr).

Note that the generators of this module are polynomials with formal degree k. Remark
also that comparing matrices (1) and (2) we obtain the equality

Mres0,x(C0, d, C1, . . . , Cr) = Iresx(C0, d, C1, . . . , Cr).

Lemma 32 If P is monic of degree p, then

Mresp,x(P.C0, p + d, P.C1, . . . , P.Cr) = Iresx(C0, d, C1, . . . , Cr) · P.

First we give an example.

Example 33 Let us first start by an example for a polynomial P of degree 1. Let P (x) =
x−2, and C0, C1, C2, C3 as in Example 24. The matrix Syl1,x(PC0, 3+1, PC1, PC2, PC3)
is equal to  4 −3 2 −7 11 −7 20 −27 −16

−3 8 −5 13 28 19 −49 55 31
PC1 PC2 PC3 Pr1 Pr2 Pr3 Pr′1 Pr′2 Pr′3

 .

We subtract from the second row (−2) times the first, we obtain the matrix 4 −3 2 −7 11 −7 20 −27 −16
5 2 −1 −1 6 5 −9 1 −1

PC1 PC2 PC3 Pr1 Pr2 Pr3 Pr′1 Pr′2 Pr′3

 . (3)

Comparing this matrix to Syl0,x(C0, 3, C1, C2, C3) given in Equation (2) we see that it is
the same one, except for the last row which is multiplied by P . In particular, any maximal
minor of the matrix Syl1,x(PC0, 3 + 1, PC1, PC2, PC3) can be written as a product of P
and a maximal minor of Sylx(C0, 3, C1, C2, C3), for instance∣∣∣∣∣∣

4 −3 2
5 2 −1

PC1 PC2 PC3

∣∣∣∣∣∣ = P

∣∣∣∣∣∣
4 −3 2
5 2 −1
C1 C2 C3

∣∣∣∣∣∣ = P

∣∣∣∣∣∣
4 −3 2
5 2 −1
3 3 −7

∣∣∣∣∣∣ .

This implies Mres1,x(P.C0, 3 + 1, P.C1, PC2, P.C3) = Iresx(C0, 3, C1, C2, C3) · P .
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Proof of Lemma 32 Let us first demonstrate the relation for a polynomial P of de-
gree 1. Let P = x + s, and M = Syl1,x(PC0, d + 1, PC1, . . . , PCr). By sub-
tracting iteratively from each row s times the preceding row, starting at the sec-
ond one and finishing at the last but one we obtain the same rows as those of the
matrix Sylx(C0, d, C1, . . . , Cr). Except for the last row, where we have the vector
(Rem(PC1, PC0), . . . ,Rem(PCr, PC0), . . . , Rem(x.C1P, PC0), . . . , Rem(x.PCr, PC0),
. . . , Rem(xd−1.PC1, PC0), . . . , Rem(xd−1.CrP, PC0)). So the last row is merely multi-
plied by P . It follows that any minor of size d can be written as a product of P and a
minor of M . We conclude that

Mres1,x(P.C0, d + 1, P.C1, . . . , P.Cr) = Mres0,x(C0, d, C1, . . . , Cr) · P.

A similar computation shows that

Mresk+1,x(P.C0, d + 1, P.C1, . . . , P.Cr) = Mresk,x(C0, d, C1, . . . , Cr) · P.

Finally, for P of degree > 1 we obtain the result by iteration, since P can be written as
a product of linear factors in the splitting algebra of P . 2

We need the following lemma.

Lemma 34 Let E0, E1, . . . , Er be polynomials in A[x] such that C0E0 + C1E1 + · · · +
CrEr = x`. Assume that Iresx(C0, d, C1, . . . , Cr) = 0. Let ci be the constant coefficient
of Ci.

1. We have c`
0 = 0.

2. Consider i ∈ {1, . . . , r}

(a) We have cd`
i = 0.

(b) Assume that E0 is monic of degree e, E1, . . . , Er have formal degrees ≤ e and
Ci have formal degrees < d (so ` = e + d). Assume also that the conjecture in
Lemma 29 is true. Then c`

i = 0.

Proof 1) We apply Lemma 29 1). Since x` ∈ 〈C0, . . . , Cr〉 we get

c`
0 = Res(x`, `, C0) = ±Res(C0, d, x`) ∈ Iresx(C0, d, C1, . . . , Cr).

2a) We have c`
i = Res(x`, `, Ci, di) = ±Res(Ci, di, x

`, `) ∈ I = 〈C0, . . . , Cr〉 ∩ A and
Id ⊆ Iresx(C0, d, C1, . . . , Cr).
2b) We apply Lemma 29 2). Let B = C0E0 + C1E1 + · · · + CrEr. In the generic case
B is monic of degree ` and Res(B, `, Ci) is in the elimination ideal 〈C0, . . . , Cr〉 ∩ A.
This implies it is in the resultant ideal Ires(C0, d, C1, . . . , Cr). After specialization, we get
B = x` and we deduce c`

i = Res(x`, `, Ci) = 0. 2

Proof of Theorem 8

Within Context, we consider fi’s and gi’s as being of formal degree d. We define the
formal reciprocal polynomials in degree d, Fi = xdfi(

1
x
) and Gi = xdgi(

1
x
).

By Lemma 32 we have

Ires(G1, d, G2, . . . , Gn) · F1 = Mresd(G1F1, d, G2F1, . . . , GnF1) ⊆ A[x].
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So, applying Lemma 17 we are allowed to reason modulo Ires(G1, d, G2, . . . , Gn), i.e, we
can suppose that Iresx(G1, d, G2, . . . , Gn) = 0.
In this situation, since F1G1 + . . . + FnGn = x2d, the coefficients of degree d of g′is satisfy
Lemma 34. We conclude that any of the coefficients of gi’s in degree d, let us denote
a, verify ak · B ⊆ A for some k ∈ N which we are able to clarify according to d. By
symmetry, we get the same result for any of the coefficients of fi’s in degree d. This gives
a first approximation of A1 by A′ = A +

√
I where I is the ideal of B generated by the

coefficients of degree d of fi’s and gi’s. Since we are allowed to reason modulo
√
I, we

finish the algorithm by induction on d.
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