An Algorithm for the Traverso-Swan theorem on seminormal rings

Sami Barhoumi (${ }^{1}$), Henri Lombardi $\left({ }^{2}\right)$

June 4, 2008

Abstract

We give an algorithm for an explicit implementation of Traverso-Swan's theorem, saying that a reduced ring \mathbf{A} is seminormal if and only if the canonical map: Pic $\mathbf{A} \rightarrow$ Pic $\mathbf{A}[x]$ is an isomorphism.

MSC 2000 : 13C10, 19A13, 14Q20, 03F65.
Keywords : Seminormal ring, Picard Group, Constructive Mathematics, Traverso-Swan theorem, Resultant ideal, Subresultant module.

1 Introduction

In [2] T. Coquand obtained a constructive proof of the fact that a reduced $\operatorname{ring} \mathbf{A}$ is seminormal if and only if the canonical map:

$$
\operatorname{Pic} \mathbf{A} \rightarrow \operatorname{Pic} \mathbf{A}[x]
$$

is an isomorphism. This theorem is due to Swan [8], generalizing a result of Traverso [9].
We recall [8] that a ring \mathbf{A} is seminormal if when $b^{2}=c^{3}$ then there exists $a \in \mathbf{A}$ such that $b=a^{3}$ and $c=a^{2}$. This is a remarkably simple condition. Similarly the statement that the canonical map Pic $\mathbf{A} \rightarrow \operatorname{Pic} \mathbf{A}[x]$ is an isomorphism can also be formulated in an elementary way. Swan's original definition includes that A is reduced, but, as noticed by Costa [4], reduceness follows from seminormality: if $d^{2}=0$ then $d^{2}=0^{3}=0$ and so there exists $a \in \mathbf{A}$ such that $a^{3}=d$ and $a^{2}=0$. So $d=0$.

When $\mathbf{A} \subseteq \mathbf{B}$ are commutative rings, the seminormal closure of \mathbf{A} in \mathbf{B} is the smallest subring \mathbf{A}_{1} of \mathbf{B} containing \mathbf{A} such that if $x \in \mathbf{B}, x^{2} \in \mathbf{A}_{1}$ and $x^{3} \in \mathbf{A}_{1}$ then $x \in \mathbf{A}_{1}$.

In this paper, we give an algorithm for an explicit implementation of Traverso-Swan's theorem. More precisely let \mathbf{C} be a reduced ring and $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ polynomials in $\mathbf{C}[X]$ such that $f_{1} \cdot g_{1}+\cdots+f_{n} \cdot g_{n}=1, f_{1}(0)=g_{1}(0)=1$ and $f_{i}(0)=g_{i}(0)=0$ for $i \geq 2$. Let \mathbf{A} be the ring generated by the coefficients of $m_{i j}=f_{i} \times g_{j}$ and \mathbf{B} the ring generated by the coefficients of f_{i} and g_{j}. We construct finitely many elements $c_{1}, \ldots, c_{m} \in \mathbf{B}$ such that $c_{i+1}^{2}, c_{i+1}^{3} \in \mathbf{A}\left[c_{1}, \ldots, c_{i}\right]$ and $\mathbf{B}=\mathbf{A}\left[c_{1}, \ldots, c_{m}\right]$.

[^0]
2 First steps for Traverso-Swan's theorem on seminormality

In this section we recall some steps in the constructive method of T. Coquand [2].
To any commutative ring A one associates the group of projective modules of rank one equipped with tensor product as group operation. This is the Picard group Pic A of the ring \mathbf{A}. We can represent any finitely generated projective module P over \mathbf{A} as the image of an $n \times n$ idempotent matrix M. The module $P \simeq \operatorname{Im} M$ is of rank one if and only if $\operatorname{det}\left(\mathrm{I}_{n}+x M\right)=1+x$. Equivalently $\operatorname{Tr} M=1$ and any 2×2 minor of M equals 0 . If $M \in \mathbf{A}^{n \times n}$ represents a projective A-module P of rank one, we use the notation

$$
M \simeq_{\mathbf{A}} \mathrm{I}_{1, n}=\left(\begin{array}{cc}
1 & 0_{1, n-1} \\
0_{n-1,1} & 0_{n-1, n-1}
\end{array}\right)
$$

for expressing that P is a free module over A. Precisely we have:
Lemma 1 Let M be a projection matrix of rank one over a ring \mathbf{A}. Then $M \simeq_{\mathbf{A}} \mathrm{I}_{1, n}$ if and only if there exist $f_{i}, g_{j} \in \mathbf{A}$ such that $m_{i j}=f_{i} g_{j}$ for each i, j. If we write f the column vector $\left(f_{i}\right)$ and g the row vector $\left(g_{j}\right)$ this can be written as $M=f g$. Furthermore the column vector f and the row vector g are uniquely defined up to a unit by these conditions: if we have other vectors f^{\prime} and row g^{\prime} such that $M=f^{\prime} g^{\prime}$ then there exists a unit u of \mathbf{A} such that $f=u f^{\prime}$ and $g^{\prime}=u g$.

Note that in the reverse way when we have a column vector f and a row vector g, if $g f=1$, then the matrix $M=f g$ is a projection matrix of rank 1 .

Theorem 2 (Traverso-Swan-Coquand)
Let k be a positive integer. A reduced ring \mathbf{A} is seminormal if and only if the canonical map Pic $\mathbf{A} \rightarrow \operatorname{Pic} \mathbf{A}\left[x_{1}, \ldots, x_{k}\right]$ is an isomorphism.

The "only if part" is based on a Schanuel example. The proof of the "if part" is much more difficult. In this paper we give an algorithm for the following particular case ($k=1$).

Theorem 3 Le A be a seminormal ring. Then the canonical map Pic $\mathbf{A} \rightarrow \operatorname{Pic} \mathbf{A}[x]$ is an isomorphism.

The first author will propose in a following paper a direct algorithmic proof of the implication "A seminormal implies $\mathbf{A}[x]$ seminormal". Combined with the present paper this will give an algorithm for the general case (Theorem 2).

First steps in Coquand's proof are based on the following lemmas.
Lemma 4 If \mathbf{A} is a reduced ring, then the canonical map $\operatorname{Pic} \mathbf{A} \rightarrow \operatorname{Pic} \mathbf{A}[x]$ is an isomorphism if and only if for any $n \times n$ projection matrix $M(x)=\left(m_{i j}(x)\right)$ of rank one over $\mathbf{A}[x]$ such that $M(0)=\mathrm{I}_{1, n}$, there exist $f_{i}, g_{j} \in \mathbf{A}[x]$ such that $f(0)=g(0)=1$ and $m_{i j}=f_{i} g_{j}$.

Let us recall that a ring is zero-dimensional and reduced if and only if every element a has a quasi-inverse, i.e. an element a^{\bullet} such that

$$
a^{2} a^{\bullet}=a, \quad \text { and } \quad a\left(a^{\bullet}\right)^{2}=a^{\bullet} .
$$

Such a ring is often called a Von Neuman regular ring.
In constructive mathematics we say that a ring is a discrete field if we have the disjunction "any element is zero or invertible" in an explicit way (see [7] for basic concepts of constructive algebra). A discrete field is zero-dimensional and reduced.

Lemma 5 If \mathbf{A} is a reduced ring then \mathbf{A} has a reduced zero-dimensional extension.
For Lemma 5, if \mathbf{A} is an integral domain, we can take the fraction field of \mathbf{A}.

Lemma 6 If \mathbf{C} is a reduced zero-dimensional ring, then any finitely generated projective module of rank one over $\mathbf{C}[x]$ is free.

In case \mathbf{C} is a discrete field we can use the following procedure for Lemma 6. We start with a projection matrix of rank one $M(x)=\left(m_{i j}\right)$ such that $M(0)=\mathrm{I}_{1, n}$. We take for f_{1} the gcd of the first row of M in $\mathbf{C}[x]$ with $f_{1}(0)=1$. Then $g_{j}=\frac{m_{1 j}}{f_{1}}, f_{i}=\frac{m_{i 1}}{g_{1}}$.

Since lemmas 4,5 and 6 are relatively easy, the more difficult part in the proof of Theorem 3 is given by Theorem 8 below.

Context: Let \mathbf{B} be a reduced ring and $f_{i}, g_{i}(i=1, \ldots, n)$ polynomials in $\mathbf{B}[x]$ such that $\sum f_{i} g_{i}=1, f_{1}(0)=g_{1}(0)=1$ and $f_{i}(0)=g_{i}(0)=0$ for $i \geq 2$. Let $m_{i j}(x)=f_{i}(x) g_{j}(x)$. Let \mathbf{A} be the ring generated by the coefficients of $m_{i j}$'s. We assume also that \mathbf{B} is generated by the coefficients of f_{i} and g_{i}. We denote by \mathbf{A}_{1} the seminormal closure of \mathbf{A} in \mathbf{B}.

Remark 7 Let us explain how to come within Context if we start with a projection matrix of rank one $M(x)=\left(m_{i j}\right)$ such that $M(0)=\mathrm{I}_{1, n}$. Let \mathbf{A} be the ring generated by the coefficients of $m_{i j}$'s. We consider a reduced zero-dimensional ring \mathbf{C} containing \mathbf{A} (Lemma 5). We find polynomials f_{i} and g_{i} in $\mathbf{C}[x]$ such that $f_{1}(0)=1=g_{1}(0)$ and $m_{i j}=f_{i} g_{j}$ for any i, j (Lemma 6). Then \mathbf{B} is the ring generated by the coefficients of f_{i} 's and g_{i} 's. As already explained, in case the matrix has its coefficients in an integral ring this procedure is particularly simple.

Using Lemma 4 and the previous remark (which is based on constructive proofs of Lemmas 5 and 6) it is clear that Theorem 3 is a consequence of the following more precise statement.

Theorem 8 Within Context, $\mathbf{A}_{1}=\mathbf{B}$. More precisely there are finitely many elements $c_{1}, \ldots, c_{m} \in \mathbf{B}$ such that $c_{i+1}^{2}, c_{i+1}^{3} \in \mathbf{A}\left[c_{1}, \ldots, c_{i}\right](i \in\{1, \ldots, m-1\})$ and $\mathbf{B}=\mathbf{A}\left[c_{1}, \ldots, c_{m}\right]$.

Lemma 9 Within Context, the coefficients of f_{i} and g_{j} are integral over A. So B is finite as an A-module.

Indeed, if u is a coefficient of f_{i}, it follows from $f_{i} g_{j} \in \mathbf{A}[x]$ that $u g_{j}(0)$ is integral over A for all j. This is a consequence of Kronecker's theorem [3,5,6] that states that if $P_{1} P_{2}=Q \in \mathbf{A}[x]$ then any product $u_{1} u_{2}$, where u_{i} is a coefficient of P_{i}, is integral over the ring generated by the coefficients of Q. Since $g_{1}(0)=1$, this implies that u is integral over A.

In the sequel of the paper we explain how to get algorithmically Theorem 8.
In section 3 we give some preliminary lemmas for this construction. In section 4 we give the algorithm for a 2×2 projection matrix of rank one. In section 5 we give the general algorithm for an $n \times n$ projection matrix of rank one.

3 Preliminary Lemmas

Lemma 10 Let $c \in \mathbf{B}$ and $m \in \mathbb{N}$ such that $c^{n} \in \mathbf{A}_{1}$ for any $n \geq m$, then $c \in \mathbf{A}_{1}$.
Proof For example let $m=2^{4}=16$. We have following:
since c^{16} and $c^{24} \in \mathbf{A}_{1}$ then $c^{8} \in \mathbf{A}_{1}$, since c^{18} and $c^{27} \in \mathbf{A}_{1}$ then $c^{9} \in \mathbf{A}_{1}$, and so on for any $n \geq 8, a^{n} \in \mathbf{A}_{1}$. Briefly we can pass from 2^{4} to 2^{3}. In the same way we pass from 2^{3} to 2^{2}, and from 2^{2} to 2 . Thus c^{2} and $c^{3} \in \mathbf{A}_{1}$, so $c \in \mathbf{A}_{1}$.
Lemma $11 \quad \mathbf{A}\left[\right.$ coefficients of $\left.f_{1}\right]=\mathbf{B}$
Proof Let \mathbf{B}^{\prime} be the ring generated by \mathbf{A} and the coefficients of f_{1}. We have $m_{1 j}=f_{1} g_{j}$, $f_{1}(0)=1$. Suppose that $\operatorname{deg} m_{1 j} \leq d$. We divide $m_{1 j}$ by f_{1} by ascending powers, we obtain $m_{1 j}=q f_{1}+x^{d+1} h, q, h \in \mathbf{A}[x]$. Necessarily $h=0, q=g_{j}$ and thus the coefficients of g_{j} are polynomial combinations of those of $m_{1 j}$ and f_{1}. It follows that $g_{j} \in \mathbf{B}^{\prime}[x]$. Since $g_{1} \in \mathbf{B}^{\prime}[x]$ we obtain in a similar way that $f_{i} \in \mathbf{B}^{\prime}[x]$. So $\mathbf{B}=\mathbf{B}^{\prime}$.
Example 12 Let $n=2$, $f_{1}=1+a x+b x^{2}, f_{2}=c x+d x^{2}, g_{1}=1+e x+f x^{2}, g_{2}=g x+h x^{2}$, $m_{11}=f_{1} g_{1}, m_{12}=f_{1} g_{2}, m_{21}=f_{2} g_{1}, m_{22}=f_{2} g_{2}$. We have $\mathbf{B}=\mathbf{A}[a, b]$, and a, b are integral over \mathbf{A}.
Lemma 13 If $a \in \mathbf{A}$ and $a f_{1} \in \mathbf{A}[x]$ then there exists $k \in \mathbb{N}$ such that $a^{k} \mathbf{B} \subseteq \mathbf{A}$.
Proof We have $\mathbf{B}=\mathbf{A}\left[b_{1}, \ldots, b_{r}\right]$ where $f_{1}=1+b_{1} x+\cdots+b_{r} x^{r}$ (Lemma 11). Every b_{i} is integral over \mathbf{A}. Let d_{i} be the degree of an integral dependence relation of b_{i}. Then $\mathbf{B}=\sum \mathbf{A} b^{\delta}$, with $b^{\delta}=b_{1}^{\delta_{1}} \ldots b_{r}^{\delta_{r}}, 0 \leq \delta_{i}<d_{i}$. (δ means $\delta_{1}, \ldots, \delta_{r}$ and b^{δ} is a pure notation). If $a f_{1} \in \mathbf{A}[x]$ and $\sum\left(d_{i}-1\right)=k$, then $a^{k} b^{\delta}=\left(a b_{1}\right)^{\delta_{1}} \cdots\left(a b_{r}\right)^{\delta_{r}} \cdot a^{k-\sum \delta_{i}}$ with $k-\sum \delta_{i} \geq 0$. So $a^{k} b^{\delta} \in \mathbf{A}$. Thus $a^{k} \mathbf{B} \subseteq \mathbf{A}$.
Lemma 14 If $a \in \mathbf{A}$ and $a^{m} \mathbf{B} \subseteq \mathbf{A}$ for some $m \in \mathbb{N}$, then $a \mathbf{B} \subseteq \mathbf{A}_{1}$.
Proof For $b \in \mathbf{B}$ we have $(a b)^{m} \mathbf{B} \subseteq \mathbf{A}$. This implies that $(a b)^{n} \in \mathbf{A}_{1}$ for any $n \geq m$. Applying Lemma 10 , we get $a \mathbf{B} \subseteq \mathbf{A}_{1}$.
Lemma 15 Let $a \in \mathbf{B}$ and $\ell \in \mathbb{N}$ such that $a^{\ell} f_{1} \in \mathbf{A}[x]$, then $\sqrt{a \mathbf{B}} \subseteq \mathbf{A}_{1}$.
Proof This follows from Lemma 13 and Lemma 14.
Fact 16 Let $\mathbf{C} \subseteq \mathbf{B}$ be two rings and \mathcal{J} an ideal of \mathbf{B}. Then $\mathbf{C}+\mathcal{J}$ is a ring, \mathcal{J} is an ideal of $\mathbf{C}+\mathcal{J}, \mathbf{C} \cap \mathcal{J}$ is an ideal of \mathbf{C}, and the isomorphism of \mathbf{C}-modules $(\mathbf{C}+\mathcal{J}) / \mathcal{J} \simeq$ $\mathbf{C} /(\mathbf{C} \cap \mathcal{J})$ is an isomorphism of rings.
Lemma 17 With Lemma 15 hypotheses, we have $\mathbf{A}+\sqrt{a \mathbf{B}} \subseteq \mathbf{A}_{1}$. Let $\mathcal{J}=\sqrt{a \mathbf{B}}$,

$$
\widetilde{\mathbf{A}}=(\mathbf{A}+\mathcal{J}) / \mathcal{J} \subseteq \mathbf{A}_{1} / \mathcal{J} \quad \text { and } \quad \widetilde{\mathbf{B}}=\mathbf{B} / \mathcal{J},
$$

then $\mathbf{A}_{1} / \mathcal{J}$ is the seminormal closure of $\widetilde{\mathbf{A}}$ in $\widetilde{\mathbf{B}}$.
Proof Let \mathbf{C} be the seminormal closure of $\widetilde{\mathbf{A}}$ in $\widetilde{\mathbf{B}}$. We write $\mathbf{C}=\mathbf{A}_{2} / \mathcal{J}$ with $\mathcal{J} \subseteq \mathbf{A}_{2}$ as a subring of \mathbf{B} / \mathcal{J}. It is clear that $\mathbf{A}_{1} \subseteq \mathbf{A}_{2}$. Let $x \in \mathbf{A}_{2}$ and assume first that $\bar{x}^{2}, \bar{x}^{3} \in \widetilde{\mathbf{A}}$. Then $x^{2}, x^{3} \in \mathbf{A}_{1}$, so $x \in \mathbf{A}_{1}$. Reasoning inductively, we replace \mathbf{A} by $\mathbf{A}[x]$. Since any element in \mathbf{C} can be reached in a finite number of steps, we see that $\mathbf{A}_{2}=\mathbf{A}_{1}$.

The concrete consequence of Lemma 17 for our computation is that, whenever we find an $a \in \mathbf{B}$ such that $a^{\ell} f_{1} \in \mathbf{A}[x]$ for some integer ℓ, we are allowed to replace \mathbf{A} and \mathbf{B} by $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$. Indeed, it is clear that hypotheses of Context remain true for these rings, and if forthcoming computations show that the seminormal closure of $\widetilde{\mathbf{A}}$ in $\widetilde{\mathbf{B}}$ is equal to $\widetilde{\mathbf{B}}$, Lemma 17 says that $\mathbf{A}_{1}=\mathbf{B}$.

In short "we are allowed to continue the computation modulo \mathcal{J} ".

4 The Case 2×2

Resultant and subresultants

For two polynomials $P=a_{p} x^{p}+\cdots+a_{0}$ and $Q=b_{q} x^{q}+\cdots+b_{0}$ of formal degrees p and q, we denote by $\operatorname{Res}_{x}(P, p, Q, q)$ the resultant of P and Q; that is to say the determinant of the Sylvester Matrix:

$$
\operatorname{Syl}_{x}(P, p, Q, q)=\left(\begin{array}{cccccccccc}
a_{0} & & & & & b_{0} & & & \\
a_{1} & a_{0} & & & & b_{1} & b_{0} & & \\
\vdots & a_{1} & \ddots & & & & b_{1} & \ddots & \\
\vdots & & \ddots & \ddots & & \vdots & & \ddots & b_{0} \\
a_{p} & & & \ddots & a_{0} & & \vdots & & b_{1} \\
& a_{p} & & & a_{1} & b_{q} & & & \\
& & \ddots & & \vdots & & b_{q} & & \vdots \\
& & & \ddots & \vdots & & & \ddots & \\
& & & & a_{p} & & & & b_{q}
\end{array}\right)
$$

First we recall well known identities (see e.g., [1] chapter 3).
Fact 18 Let $P, Q, Q_{1}, R, U \in \mathbf{A}[x]$ of formal degrees p, q, q_{1}, r, u. Assume that P is monic. Then

- $\operatorname{Res}_{x}(R, r, Q, q)=(-1)^{q r} \operatorname{Res}_{x}(Q, q, R, r)$,
- $\operatorname{Res}_{x}\left(R, r, Q \cdot Q_{1}, q+q_{1}\right)=\operatorname{Res}_{x}(R, r, Q, q) \operatorname{Res}_{x}\left(R, r, Q_{1}, q_{1}\right)$,
- $\operatorname{Res}_{x}(R, r, Q+U R, q)=\operatorname{Res}_{x}(R, r, Q, q)$ if $q \geq u+r$.
- $\operatorname{Res}_{x}\left(P, p, Q, q^{\prime}\right)=\operatorname{Res}_{x}(P, p, Q, q)$ if $q^{\prime} \geq q$. So when P is monic of degree p we can use the short notation $\operatorname{Res}_{x}(P, p, Q)$.
- $\operatorname{Res}_{x}(P, p, Q+U P)=\operatorname{Res}_{x}(P, p, Q)$,

We recall now the definition of subresultant polynomials. Let $d=\min (p, q)$. For any $i,(0 \leq i<d)$, the subresultant of P and Q in degree i is the determinant of the square matrix :

$$
\left(\begin{array}{ccccccc}
a_{p} & & & b_{q} & & \\
\vdots & \ddots & & \vdots & \ddots & & \\
\vdots & & & a_{p} & \vdots & & \\
\vdots & & \vdots & \vdots & & & b_{q} \\
\underbrace{}_{(q-i) \text { columns }} & & \underbrace{a_{i+1-(q-i-1)}}_{(p-i) \text { columns }} \begin{array}{llllll}
x^{q-i-1} P(x) & \cdots & \cdots & P(x) & a_{i+1} & b_{i+1-(p-i-1)} \\
x^{p-i-1} Q(x) & \cdots & \cdots & Q(x)
\end{array})
\end{array}\right.
$$

We denote it by $\operatorname{Sres}_{i, x}(P, p, Q, q)$ or $\operatorname{Sres}_{i}(P, p, Q, q)$. It is easily shown that we can take $\operatorname{Sres}_{i}(P, p, Q, q)$ of formal degree i and that $\operatorname{Sres}_{0}(P, p, Q, q)=\operatorname{Res}(P, p, Q, q)$. Moreover each $\operatorname{Sres}_{i}(P, p, Q, q)$ belongs to the ideal $\langle P, Q\rangle$.

Examples 19 Let $p=3, q=4$, and $i=2$ then

$$
\operatorname{Sres}_{2, x}(P, 3, Q, 4)=\left|\begin{array}{ccc}
a_{3} & 0 & b_{4} \\
a_{2} & a_{3} & b_{3} \\
x P(x) & P(x) & Q(x)
\end{array}\right| .
$$

Let $p=4, q=5$ and $i=2$ then

$$
\operatorname{Sres}_{3, x}(P, 4, Q, 5)=\left|\begin{array}{ccccc}
a_{4} & 0 & 0 & b_{5} & 0 \\
a_{3} & a_{4} & 0 & b_{4} & b_{5} \\
a_{2} & a_{3} & a_{4} & b_{3} & b_{4} \\
a_{1} & a_{2} & a_{3} & b_{2} & b_{3} \\
x^{2} P(x) & x P(x) & P(x) & x Q(x) & Q(x)
\end{array}\right| .
$$

The following fact is a particular case of Theorem 80 (page 239) of [1].
Fact 20 Let P be a monic polynomial of degree p and Q_{1}, Q_{2} polynomials of formal degrees q_{1}, q_{2}. Let $\operatorname{Sr}_{p}=\operatorname{Sres}_{p}\left(P Q_{1}, p+q_{1}, P Q_{2}, p+q_{2}\right)$, let sr pe the coefficient of degree p of $S r_{p}$. Then $s r_{p}=\operatorname{Res}\left(Q_{1}, q_{1}, Q_{2}, q_{2}\right)$ and $s r_{p} \cdot P=S r_{p}$.

Proof of Theorem 8 (case $n=2$)

Within Context, with $n=2$, we consider f_{i} and g_{i} as being of formal degree d. We define the formal reciprocal polynomials in degree $d, F_{i}=x^{d} f_{i}\left(\frac{1}{x}\right)$ and $G_{i}=x^{d} g_{i}\left(\frac{1}{x}\right)$. We remark that F_{i} and G_{i} can be taken of formal degree d for $i=1$ and of formal degree $d-1$ for $i>1$. Moreover F_{1} and G_{1} are monic, and $F_{1} G_{1}+F_{2} G_{2}=x^{2 d}$.

For example with $d=2, f_{1}=1+a x+b x^{2}, f_{2}=c x+k x^{2}, g_{1}=1+e x+f x^{2}$, $g_{2}=g x+h x^{2}$, we have $F_{1}=b+a x+x^{2}, F_{2}=k+c x, G_{1}=f+e x+x^{2}, G_{2}=h+g x$.

Applying Fact 20, we get

$$
s r_{d} \cdot F_{1}=\operatorname{Sres}_{d}\left(F_{1} G_{1}, 2 d, F_{1} G_{2}, 2 d-1\right) \in \mathbf{A}[x] .
$$

So srd satisfies the hypothesis of Lemma 15 , with $\ell=1$.
Applying Lemma 17 we may reason modulo $\sqrt{s r_{d} \mathbf{B}}$, i.e. we may suppose that $s r_{d}=0$ and kill nilpotent elements. Moreover $s r_{d}=\operatorname{Res}\left(G_{1}, d, G_{2}, d-1\right)$.

We need the following lemma.
Lemma 21 Let a be the constant coefficient of F_{i} or G_{i}. Then $a^{2 d} \equiv 0 \bmod s r_{d}$.
Proof E.g., let a_{i} the constant coefficient of G_{i}. We have $s r_{d}=\operatorname{Res}_{x}\left(G_{1}, d, G_{2}, d-1\right)=0$. Moreover $f_{1} g_{1}+f_{2} g_{2}=1$ gives $F_{1} G_{1}+F_{2} G_{2}=x^{2 d}$. Then we get (because G_{1} is monic)

$$
\begin{array}{rlrl}
a_{1}^{2 d} & =\operatorname{Res}\left(G_{1}, d, x^{2 d}, 2 d\right) & & =\operatorname{Res}\left(G_{1}, d, F_{1} G_{1}+F_{2} G_{2}, 2 d\right) \\
& =\operatorname{Res}\left(G_{1}, d, F_{2} G_{2}, 2 d\right) & & =\operatorname{Res}\left(G_{1}, d, F_{2} G_{2}, 2 d-2\right) \\
& =\operatorname{Res}\left(G_{1}, d, G_{2}, d-1\right) \operatorname{Res}\left(G_{1}, d, F_{2}, d-1\right) & \equiv 0 \bmod s r_{d}
\end{array}
$$

In a similar way (because $2 d \geq 2 d-2$):

$$
\begin{aligned}
a_{2}^{2 d} & =\operatorname{Res}\left(G_{2}, d-1, x^{2 d}, 2 d\right)=\operatorname{Res}\left(G_{2}, d-1, F_{1} G_{1}+F_{2} G_{2}, 2 d\right) \\
& =\operatorname{Res}\left(G_{2}, d-1, F_{1} G_{1}, 2 d\right)=\operatorname{Res}\left(G_{2}, d-1, G_{1}, d\right) \operatorname{Res}\left(G_{2}, d-1, F_{1}, d\right) \\
& \equiv 0 \bmod s r_{d}
\end{aligned}
$$

Conclusion: When we consider the case of f_{i} and g_{i} with formal degree $d,(1 \leq i \leq 2)$, any of their coefficients in degree d, let us denote a, verify $a^{k} \cdot \mathbf{B} \subseteq \mathbf{A}$ for some $k \in \mathbb{N}$ which we are able to clarify according to d.
More precisely the coefficients of f_{1} of degree ≥ 1 verify an integral dependence relation of degree $\binom{2 d}{d}$ over \mathbf{A}. Using the proof of Lemma 13 we get $s r_{d}^{k} \cdot \mathbf{B} \subseteq \mathbf{A}$ with $k=d\left(\binom{2 d}{d}-1\right)$. Since $a^{2 d} \equiv 0 \bmod s r_{d}$ in \mathbf{A} we get $a^{\ell} \cdot \mathbf{B} \subseteq \mathbf{A}$, with $\ell=2 d^{2}\left(\binom{2 d}{d}-1\right)$. E.g., for $d=3$, $\ell=342$.
This gives a first approximation of \mathbf{A}_{1} by $\mathbf{A}^{\prime}=\mathbf{A}+\sqrt{\mathcal{I}}$ where \mathcal{I} is the ideal of \mathbf{B} generated by the coefficients of degree d of f_{i} 's and g_{i} 's. Since we are allowed to reason modulo $\sqrt{\mathcal{I}}$, we finish the algorithm by induction on d.

5 Generalization to the case $n \times n$

In this section we generalize the algorithm to the case of a matrix of size $n \times n$.

Resultant ideal and subresultant modules

In this paragraph we consider $C_{0}, C_{1}, \ldots, C_{r} \in \mathbf{A}[x]$ and assume that C_{0} is monic of degree d.

For two polynomials P and Q of $\mathbf{A}[x]$, with Q monic we denote by $\operatorname{Rem}_{x}(P, Q)$ (or $\operatorname{Rem}(P, Q)$ if there is no ambiguity) the remainder of the euclidean division of P by Q. Now we recall the definition of the generalized Sylvester matrix.

Definition 22 The generalized Sylvester matrix associated to the polynomials $C_{0}, C_{1}, \ldots, C_{r} \in \mathbf{A}[x]$, denoted by $\operatorname{Syl}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$ is the matrix with the following columns: $\operatorname{Rem}\left(C_{1}, C_{0}\right), \ldots, \operatorname{Rem}\left(C_{r}, C_{0}\right), \ldots, \operatorname{Rem}\left(x . C_{1}, C_{0}\right), \ldots, \operatorname{Rem}\left(x . C_{r}, C_{0}\right)$, $\ldots, \operatorname{Rem}\left(x^{d-1} . C_{1}, C_{0}\right), \ldots, \operatorname{Rem}\left(x^{d-1} . C_{r}, C_{0}\right)$ in the basis $\left(x^{d-1}, \ldots, x, 1\right)$.

Fact 23 Let $A_{d}=\mathbf{A}[x]_{d}$ be the A-module of polynomials of degree $<d$, with basis $\left(x^{d-1}, \ldots, x, 1\right)$ and $\varphi: \mathbf{A}^{d r} \longrightarrow A_{d}$ the \mathbf{A}-linear map given by the matrix $S=$ $\operatorname{Syl}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$. Then $\left\langle C_{0}, \ldots, C_{r}\right\rangle \cap A_{d}=\operatorname{Im} \varphi$.

Example 24 Let $C_{0}(x)=x^{3}+3 x^{2}+4, C_{1}(x)=4 x^{2}+5 x+3, C_{2}(x)=-3 x^{2}+2 x+3$, $C_{3}(x)=2 x^{2}-x+7$ then

$$
\operatorname{Syl}_{x}\left(C_{0}, 3, C_{1}, C_{2}, C_{3}\right)=\left(\begin{array}{ccccccccc}
4 & -3 & 2 & -7 & 11 & -7 & 20 & -27 & -16 \tag{1}\\
5 & 2 & -1 & -1 & 6 & 5 & -9 & 1 & -1 \\
3 & 3 & 7 & -16 & 12 & -8 & 28 & -44 & 28
\end{array}\right) .
$$

Remark 25 We remark that $\operatorname{Syl}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$ is a matrix of d rows and d.r columns. Moreover if $r=1$ the determinant of the matrix is equal to the resultant of C_{0} and C_{1}.

Definition 26 Let M be a matrix in $\mathbf{A}^{m \times n}$, the determinantal ideals $\mathcal{D}_{k}(M)$ of the matrix M are the ideals generated by the minors of size k of the matrix M, with $0 \leq k \leq$ $\min (m, n)$.

Definition 27 We define the resultant ideal of $C_{0}, C_{1}, \ldots, C_{r}$, denoted by $\operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$: this is $\mathcal{D}_{d}\left(\operatorname{Syl}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)\right)$.

The importance of the resultant ideal comes from the fact it is equal to the elimination ideal, up to radical.

Lemma 28 Let C_{0} be a monic polynomial of degree d. Let \mathcal{I} be the elimination ideal $\left\langle C_{0}, C_{1}, \ldots, C_{r}\right\rangle \cap \mathbf{A}$. Then

$$
\mathcal{I}^{d} \subseteq \operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right) \subseteq \mathcal{I}
$$

Proof It is clear that $\operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right) \subseteq \mathcal{I}$. Let $S=\operatorname{Syl}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$. Let $y_{i} \in \mathcal{I} \cap \mathbf{A}(1 \leq i \leq d)$. Then $y_{i} x^{i-1} \in \mathcal{I} \cap A_{d}=\operatorname{Im} S$ (Fact 23). This means that $\operatorname{Diag}\left(y_{1}, \ldots, y_{d}\right)=S H$ for some matrix H. Thus, by the Binet-Cauchy formula, $y_{1} y_{2} \cdots y_{d}$ (the determinant of $\operatorname{Diag}\left(y_{1}, \ldots, y_{d}\right)$) is in $\operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$.

Lemma 29

1. Let $P \in\left\langle C_{0}, C_{1}, \ldots, C_{r}\right\rangle$. Then

$$
\operatorname{Res}_{x}\left(C_{0}, d, P\right) \in \operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)
$$

2. (conjecture) More generally consider the "generic" case where the coefficients of C_{0}, C_{1}, \ldots, C_{r} are indeterminates over a ring \mathbf{C}. So $\mathbf{A}=\mathbf{C}\left[\operatorname{coeffs}\right.$ of $\left.C_{i}^{\prime} s\right]$. Then

$$
\operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)=\left\langle C_{0}, C_{1}, \ldots, C_{r}\right\rangle \cap \mathbf{A} .
$$

Proof

1) follows from 2): since $\operatorname{Res}_{x}\left(C_{0}, d, P, p\right)$ belongs to $\left\langle C_{0}, C_{1}, \ldots, C_{r}\right\rangle \cap \mathbf{A}$ in the generic case, it can be expressed as a member of $\operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$ in the generic case. It remains to specialize this result.
Since we did not find a proof of 2) we give also a direct proof of 1).
For each $k<d$ we can write $P x^{k}=C_{0} Q_{k}+\operatorname{Rem}_{x}\left(P x^{k}, C_{0}\right)$. The remainder is in $\left\langle C_{0}, \ldots, C_{r}\right\rangle \cap \mathbf{A}[x]_{d}$. So it is a linear combination of the columns of $S=$ $\operatorname{Syl}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$. So $\operatorname{Syl}_{x}\left(C_{0}, d, P\right)=S T$ for a suitable matrix T. We conclude by the Binet-Cauchy formula.

We recall now the definition of the subresultant modules.
Let $k<d$. We make the following transformations in the Sylvester matrix $\operatorname{Syl}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$:

- we suppress rows with degree $<k$,
- we suppress columns $\operatorname{Rem}\left(x^{j} . C_{i}, C_{0}\right)$ when $j>d-k-1$,
- we replace the last row (corresponding to degree k) by the sequence $\operatorname{Rem}\left(C_{1}, C_{0}\right)$, $\ldots, \operatorname{Rem}\left(C_{r}, C_{0}\right), \operatorname{Rem}\left(x . C_{1}, C_{0}\right), \ldots, \operatorname{Rem}\left(x . C_{r}, C_{0}\right), \ldots, \operatorname{Rem}\left(x^{d-k-1} . C_{1}, C_{0}\right), \ldots$, $\operatorname{Rem}\left(x^{d-k-1} . C_{r}, C_{0}\right)$.

Then we obtain a matrix of size $(d-k) \times(d-k) . r$ denoted $\operatorname{Syl}_{k, x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$.
Example 30 We consider the matrix $\operatorname{Syl}_{x}\left(C_{0}, 3, C_{1}, C_{2}, C_{3}\right)$ of Example 24 and $k=1$. If we suppress rows with degree <1, and columns $\operatorname{Rem}\left(x^{j} . C_{i}, C\right)$ when $j>d-k-1=1$ we obtain the matrix

$$
\left(\begin{array}{cccccc}
4 & -3 & 2 & -7 & 11 & -7 \\
5 & 2 & -1 & -1 & 6 & 5
\end{array}\right)
$$

Finally we replace the last row by the vector $\left(C_{1}, C_{2}, C_{3}, r_{1}, r_{2}, r_{3}\right)$ with $r_{1}=\operatorname{Rem}\left(x C_{1}, C_{0}\right)$, $r_{2}=\operatorname{Rem}\left(x . C_{2}, C_{0}\right), r_{3}=\operatorname{Rem}\left(x \cdot C_{3}, C_{0}\right)$. Then

$$
\operatorname{Syl}_{1, x}\left(C_{0}, d, C_{1}, C_{2}, C_{3}\right)=\left(\begin{array}{cccccc}
4 & -3 & 2 & -7 & 11 & -7 \\
C_{1} & C_{2} & C_{3} & r_{1} & r_{2} & r_{3}
\end{array}\right) .
$$

In a similar way

$$
\operatorname{Syl}_{0, x}\left(C_{0}, 3, C_{1}, C_{2}, C_{3}\right)=\left(\begin{array}{ccccccccc}
4 & -3 & 2 & -7 & 11 & -7 & 20 & -27 & -16 \tag{2}\\
5 & 2 & -1 & -1 & 6 & 5 & -9 & 1 & -1 \\
C_{1} & C_{2} & C_{3} & r_{1} & r_{2} & r_{3} & r_{1}^{\prime} & r_{2}^{\prime} & r_{3}^{\prime}
\end{array}\right)
$$

with $r_{1}^{\prime}=\operatorname{Rem}\left(x^{2} . C_{1}, C_{0}\right), r_{2}^{\prime}=\operatorname{Rem}\left(x^{2} . C_{2}, C_{0}\right)$ and $r_{3}^{\prime}=\operatorname{Rem}\left(x^{2} . C_{3}, C_{0}\right)$
Definition 31 For $k<d$, the subresultant module of degree k associated to the polynomials $C_{0}, C_{1}, \ldots, C_{r}$, denoted by $\operatorname{Mres}_{k, x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$ is the \mathbf{A}-module generated by the maximal minors of $\operatorname{Syl}_{k, x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$.

Note that the generators of this module are polynomials with formal degree k. Remark also that comparing matrices (1) and (2) we obtain the equality

$$
\operatorname{Mres}_{0, x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)=\operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)
$$

Lemma 32 If P is monic of degree p, then

$$
\operatorname{Mres}_{p, x}\left(P . C_{0}, p+d, P . C_{1}, \ldots, P . C_{r}\right)=\operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right) \cdot P
$$

First we give an example.
Example 33 Let us first start by an example for a polynomial P of degree 1. Let $P(x)=$ $x-2$, and $C_{0}, C_{1}, C_{2}, C_{3}$ as in Example 24. The matrix $\mathrm{Syl}_{1, x}\left(P C_{0}, 3+1, P C_{1}, P C_{2}, P C_{3}\right)$ is equal to

$$
\left(\begin{array}{ccccccccc}
4 & -3 & 2 & -7 & 11 & -7 & 20 & -27 & -16 \\
-3 & 8 & -5 & 13 & 28 & 19 & -49 & 55 & 31 \\
P C_{1} & P C_{2} & P C_{3} & P r_{1} & P r_{2} & P r_{3} & P r_{1}^{\prime} & P r_{2}^{\prime} & P r_{3}^{\prime}
\end{array}\right)
$$

We subtract from the second row (-2) times the first, we obtain the matrix

$$
\left(\begin{array}{ccccccccc}
4 & -3 & 2 & -7 & 11 & -7 & 20 & -27 & -16 \tag{3}\\
5 & 2 & -1 & -1 & 6 & 5 & -9 & 1 & -1 \\
P C_{1} & P C_{2} & P C_{3} & P r_{1} & P r_{2} & P r_{3} & P r_{1}^{\prime} & P r_{2}^{\prime} & P r_{3}^{\prime}
\end{array}\right) .
$$

Comparing this matrix to $\operatorname{Syl}_{0, x}\left(C_{0}, 3, C_{1}, C_{2}, C_{3}\right)$ given in Equation (2) we see that it is the same one, except for the last row which is multiplied by P. In particular, any maximal minor of the matrix $\operatorname{Syl}_{1, x}\left(P C_{0}, 3+1, P C_{1}, P C_{2}, P C_{3}\right)$ can be written as a product of P and a maximal minor of $\operatorname{Syl}_{x}\left(C_{0}, 3, C_{1}, C_{2}, C_{3}\right)$, for instance

$$
\left|\begin{array}{ccc}
4 & -3 & 2 \\
5 & 2 & -1 \\
P C_{1} & P C_{2} & P C_{3}
\end{array}\right|=P\left|\begin{array}{ccc}
4 & -3 & 2 \\
5 & 2 & -1 \\
C_{1} & C_{2} & C_{3}
\end{array}\right|=P\left|\begin{array}{ccc}
4 & -3 & 2 \\
5 & 2 & -1 \\
3 & 3 & -7
\end{array}\right|
$$

This implies $\operatorname{Mres}_{1, x}\left(P . C_{0}, 3+1, P . C_{1}, P C_{2}, P . C_{3}\right)=\operatorname{Ires}_{x}\left(C_{0}, 3, C_{1}, C_{2}, C_{3}\right) \cdot P$.

Proof of Lemma 32 Let us first demonstrate the relation for a polynomial P of degree 1. Let $P=x+s$, and $M=\operatorname{Syl}_{1, x}\left(P C_{0}, d+1, P C_{1}, \ldots, P C_{r}\right)$. By subtracting iteratively from each row s times the preceding row, starting at the second one and finishing at the last but one we obtain the same rows as those of the matrix $\operatorname{Syl}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$. Except for the last row, where we have the vector $\left(\operatorname{Rem}\left(P C_{1}, P C_{0}\right), \ldots, \operatorname{Rem}\left(P C_{r}, P C_{0}\right), \ldots, \operatorname{Rem}\left(x \cdot C_{1} P, P C_{0}\right), \ldots, \operatorname{Rem}\left(x \cdot P C_{r}, P C_{0}\right)\right.$, $\left.\ldots, \operatorname{Rem}\left(x^{d-1} . P C_{1}, P C_{0}\right), \ldots, \operatorname{Rem}\left(x^{d-1} \cdot C_{r} P, P C_{0}\right)\right)$. So the last row is merely multiplied by P. It follows that any minor of size d can be written as a product of P and a minor of M. We conclude that

$$
\operatorname{Mres}_{1, x}\left(P . C_{0}, d+1, P . C_{1}, \ldots, P . C_{r}\right)=\operatorname{Mres}_{0, x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right) \cdot P .
$$

A similar computation shows that

$$
\operatorname{Mres}_{k+1, x}\left(P . C_{0}, d+1, P . C_{1}, \ldots, P . C_{r}\right)=\operatorname{Mres}_{k, x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right) \cdot P .
$$

Finally, for P of degree >1 we obtain the result by iteration, since P can be written as a product of linear factors in the splitting algebra of P.

We need the following lemma.
Lemma 34 Let $E_{0}, E_{1}, \ldots, E_{r}$ be polynomials in $\mathbf{A}[x]$ such that $C_{0} E_{0}+C_{1} E_{1}+\cdots+$ $C_{r} E_{r}=x^{\ell}$. Assume that $\operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)=0$. Let c_{i} be the constant coefficient of C_{i}.

1. We have $c_{0}^{\ell}=0$.
2. Consider $i \in\{1, \ldots, r\}$
(a) We have $c_{i}^{d e}=0$.
(b) Assume that E_{0} is monic of degree e, E_{1}, \ldots, E_{r} have formal degrees $\leq e$ and C_{i} have formal degrees $<d$ (so $\ell=e+d$). Assume also that the conjecture in Lemma 29 is true. Then $c_{i}^{\ell}=0$.

Proof 1) We apply Lemma 29 1). Since $x^{\ell} \in\left\langle C_{0}, \ldots, C_{r}\right\rangle$ we get

$$
c_{0}^{\ell}=\operatorname{Res}\left(x^{\ell}, \ell, C_{0}\right)= \pm \operatorname{Res}\left(C_{0}, d, x^{\ell}\right) \in \operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right) .
$$

2a) We have $c_{i}^{\ell}=\operatorname{Res}\left(x^{\ell}, \ell, C_{i}, d_{i}\right)= \pm \operatorname{Res}\left(C_{i}, d_{i}, x^{\ell}, \ell\right) \in \mathcal{I}=\left\langle C_{0}, \ldots, C_{r}\right\rangle \cap \mathbf{A}$ and $\mathcal{I}^{d} \subseteq \operatorname{Ires}_{x}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$.
2b) We apply Lemma 29 2). Let $B=C_{0} E_{0}+C_{1} E_{1}+\cdots+C_{r} E_{r}$. In the generic case B is monic of degree ℓ and $\operatorname{Res}\left(B, \ell, C_{i}\right)$ is in the elimination ideal $\left\langle C_{0}, \ldots, C_{r}\right\rangle \cap \mathbf{A}$. This implies it is in the resultant ideal $\operatorname{Ires}\left(C_{0}, d, C_{1}, \ldots, C_{r}\right)$. After specialization, we get $B=x^{\ell}$ and we deduce $c_{i}^{\ell}=\operatorname{Res}\left(x^{\ell}, \ell, C_{i}\right)=0$.

Proof of Theorem 8

Within Context, we consider f_{i} 's and g_{i} 's as being of formal degree d. We define the formal reciprocal polynomials in degree $d, F_{i}=x^{d} f_{i}\left(\frac{1}{x}\right)$ and $G_{i}=x^{d} g_{i}\left(\frac{1}{x}\right)$.
By Lemma 32 we have

$$
\operatorname{Ires}\left(G_{1}, d, G_{2}, \ldots, G_{n}\right) \cdot F_{1}=\operatorname{Mres}_{d}\left(G_{1} F_{1}, d, G_{2} F_{1}, \ldots, G_{n} F_{1}\right) \subseteq \mathbf{A}[x]
$$

So, applying Lemma 17 we are allowed to reason modulo $\operatorname{Ires}\left(G_{1}, d, G_{2}, \ldots, G_{n}\right)$, i.e, we can suppose that $\operatorname{Ires}_{x}\left(G_{1}, d, G_{2}, \ldots, G_{n}\right)=0$.
In this situation, since $F_{1} G_{1}+\ldots+F_{n} G_{n}=x^{2 d}$, the coefficients of degree d of $g_{i}^{\prime} s$ satisfy Lemma 34. We conclude that any of the coefficients of g_{i} 's in degree d, let us denote a, verify $a^{k} \cdot \mathbf{B} \subseteq \mathbf{A}$ for some $k \in \mathbb{N}$ which we are able to clarify according to d. By symmetry, we get the same result for any of the coefficients of f_{i} 's in degree d. This gives a first approximation of \mathbf{A}_{1} by $\mathbf{A}^{\prime}=\mathbf{A}+\sqrt{\mathcal{I}}$ where \mathcal{I} is the ideal of \mathbf{B} generated by the coefficients of degree d of f_{i} 's and g_{i} 's. Since we are allowed to reason modulo $\sqrt{\mathcal{I}}$, we finish the algorithm by induction on d.

References

[1] F. Apéry, J.-P. Joualoulou, Elimination: Le cas d'une variable, Hermann (2006). 5, 6
[2] T. Coquand, On Seminormality, J. Algebra 305 (2006) 577-584. 1, 2
[3] T. Coquand, H. Persson, Valuations and Dedeking Prague theorem, J. Pure Appl. Algebra 155 (2001) 121-129. 3
[4] D. L. Costa, Seminormality and projective module, in: Séminaire d'algèbre Dubreil et Marie-Pole Mallivain, 34me année, vol. 924, 1982. 1
[5] H. Edwards, Divisor Theory, Birkhauser, Boston, MA, 1989. 3
[6] H. Lombardi, Hidden constructions in abstract algebra. (1) Integral dependence relations, J. Pure Appl. Agebra 167 (2002) 259-267. 3
[7] R. Mines, F. Richman, W. Ruitenburg A Course in Constructive Algebra. Universitext. Springer-Verlag, (1988). 2
[8] R. Swan, On seminormality, J. Algebra 67 (1980) 210-229 1
[9] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa 24 (1970) 585-595. 1

[^0]: ${ }^{1}$ Équipe de Mathématiques, UMR CNRS 6623, UFR des Sciences et Techniques, Université de Franche-Comté, 25030 BESANCON cedex, FRANCE, email: sami.barhoumi@univ-fcomte.fr.
 ${ }^{2}$ Same address, email: henri.lombardi@univ-fcomte.fr.

