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Abstract

The Traverso-Swan theorem says that a reduced ring A is seminormal if and only if
the natural homomorphism PicA→ PicA[X] is an isomorphism ([18, 17]). We give here
all the details needed to understand the elementary constructive proof for this result given
by Thierry Coquand in [2].

This example is typical of a new constructive method. The final proof is simpler than
the initial classical one. More important: the classical argument by absurdum using “an
abstract ideal object” is deciphered with a general technique based on the following idea:
purely ideal objects constructed using TEM and Choice may be replaced by concrete
objects that are “finite approximations” of these ideal objects.

1 Introduction

Quant à moi je proposerais de s’en tenir aux règles suivantes:

1. Ne jamais envisager que des objets susceptibles d’être définis
en un nombre fini de mots;

2. Ne jamais perdre de vue que toute proposition sur l’infini doit
être la traduction, l’énoncé abrégé de propositions sur le fini;

3. Éviter les classifications et les définitions non prédicatives.

Henri Poincaré,
in La logique de l’infini (Revue de Métaphysique et de Morale 1909).

Reprint in Dernières pensées, Flammarion.

The Traverso-Swan theorem says that a reduced ring A is seminormal if and only if the
natural homomorphism PicA → PicA[X] is an isomorphism ([18, 17]). We give here all the
details needed to understand the elementary constructive proof for this result given by Thierry
Coquand in [2].

First, we have to give a classical proof (using TEM and Choice) as elementary as possible.
After this first simplification we have to remove remaining non constructive arguments. Here
it is a proof by absurdum based on the introduction of an abstract ideal object, which is a
minimal prime.
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The deciphering of this non constructive argument is based on the so called “dynamical
method”.

This example is paradigmatic of a new general constructive method inspired by the following
semantic: purely ideal objects constructed using TEM and Choice may be replaced by concrete
objects that are finite approximations of these ideal objects.

An important step, where this method was introduced in Computer Algebra from an effi-
ciency point of view, was the computer algebra system D5 [9]: here we see that it is possible
to compute inside the algebraic closure of an arbitrary computable field, contrarily to the well
known fact that such an algebraic closure cannot exist constructively as a static object. So D5
told us that, from a constructive point of view, the algebraic closure of an arbitrary computable
field does exist, not as a static object, but as a dynamical one.

In the paper [8] the dynamical method is explained on the example of abstract proofs, via
model theory, of results similar to the Hilbert Nullstellensatz. Here ideal abstract objects are the
models of a coherent first order theory. These models have to exist in classical mathematics: this
is the compactness theorem in (classical) model theory. When the classical proof is deciphered
in a constructive one, each one of these models is replaced by “a finite amount of information
concerning it”.

In the papers [4, 7], chains of prime ideals that are used in classical mathematics in order
to define the Krull dimension are replaced by finite sequences of elements of the ring. In
this way we obtain an elementary definition of the Krull dimension, without using any prime
ideal. The Krull dimension of usual rings matches the elementary definition in a constructive
way. So theorems in commutative algebra that have in their hypothesis a bound on the Krull
dimension can now be reread in a constructive way, and for several important ones a constructive
proof, much more precise than the classical one, has been found. E.g., Serre’s “splitting-off”,
“stable range” and “cancellation” theorems of Bass, and Forster-Swan theorem. Moreover the
constructive versions ([5, 6]) are an improvement of the most sophisticated classical versions of
these theorems given by R. Heitmann in his remarkable “nonNœtherian” 1984 paper [12].

Finally let us mention that in [19], I. Yengui has shown how to reread in a dynamical way
classical proofs that use maximal ideals.

In the example given in the present paper, we get a proof which is simpler and more
elegant than the classical ones. But the most important fact is that the classical argument “by
absurdum and using a purely ideal object” is deciphered by following the general method we
have sketched. The localisation at a generic minimal prime p is replaced by a tree computation
where we try to make invertible all elements that appear in the computational proof. The tree
comes from the fact that in the classical reasoning one uses an argument saying “any element
x of the ring is either inside or outside the generic minimal prime p we consider”. Since the
prime is minimal, a priori x have to be outside of p. We have to use the branch “x inside p”
only in the case where the computation shows that 0 becomes invertible if x is outside p.

We shall explain first what happens with an integral ring. We give the proof of the general
case in the Annex.

2 Preliminaries

A, B, C are commutative rings. Used without more precision an “homomorphism” is always
a ring homomorphism.
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Seminormal rings

An integral ring A is said to be seminormal if whenever b2 = c3 6= 0 the element a = b/c of
the fraction field is in A. Remark that a3 = b and a2 = c.

An arbitrary ring A is said to be seminormal if whenever b2 = c3, there exists a ∈ A such
that a3 = b and a2 = c. This implies A is reduced: if b2 = 0 then b2 = 03, so we get an a ∈ A
with a3 = b and a2 = 0, thus b = 0.

In a ring if x2 = y2 and x3 = y3 then (x− y)3 = 0. So:

Fact 2.1 In a reduced ring x2 = y2 and x3 = y3 imply x = y.

Consequently the element a here upon is always unique. Moreover Ann b = Ann c = Ann a.

The category of finitely generated projective A-modules

A finitely generated projective module is a module M isomorphic to a direct summand of a
finite rank free module: M ⊕M ′ ' Am. Equivalenty, it is a module isomorphic to the image
of a projection matrix.

A A-linear map ψ : M → N between finitely generated projective modules with M ⊕M ′ '
Am and N⊕N ′ ' An can be given by the linear map ψ̃ : Am → An defined by ψ̃(x⊕x′) = ψ(x).

In other words the category of finitely generated projective modules over A is equivalent to
the category whose objects are idempotent matrices with coefficients in A, a morphism from P
to Q being a matrix H such that QH = H = HP . In particular the identity of P is represented
by P .

Fact 2.2 If M and N are represented by idempotent matrices P = (pi,j)i,j∈I ∈ AI×I and
Q = (qk,`)k,`∈J ∈ AJ×J , then:

1. The direct sum M ⊕N is represented by Diag(P,Q) =

[
P 0
0 Q

]
.

2. The tensor product M ⊗N is represented by the Kronecker product

P ⊗Q = (r(i,k),(j,`))(i,k),(j,`)∈I×J , where r(i,k),(j,`) = pi,jqk,`.

3. M and N are isomorphic if and only if matrices Diag(P, 0n) and Diag(0m, Q) are similar.

Proof. 3. Remark that the projection on M in M ⊕M ′ ⊕ An is represented by the matrix
Diag(P, 0n) and the projection on N in Am⊕N ⊕N ′ is represented by the matrix Diag(0m, Q).
Wrinting Am ⊕An as M ⊕M ′ ⊕N ⊕N ′ we see that the two projections are conjugate by the
automorphism exchanging M and N . 2

Rank of a finitely generated projective module

If ϕ : M →M is an endomorphism of the finitely generated projective A-moduleM image of the
idempotent matrix P and ifH represents ϕ (withH = PH = HP ), letN = KerP . SoM⊕N =
An and we can define the determinant of ϕ by det(ϕ) = det(ϕ⊕ Idn) = det(H + (In − P )).

Let µX be the multiplication by X inside the A[X]-module M [X] (this module, extended
of M from A, is also represented by the matrix P ), then det(µX) = RM(X) = r(X) is a
polynomial satisfying r(XY ) = r(X)r(Y ) and r(1) = 1. In other words its coefficients are a
basic system of orthogonal idempotents. The module is said of rank k if r(X) = Xk.

A direct computation shows the following fact.
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Fact 2.3 A matrix P = (pi,j) is a projection matrix whose image is a projective module of
constant rank 1 if and only if the following properties are satisfied

•
∧2 P = 0, i.e., all 2× 2 minors are null,

• TrP =
∑

i pii = 1.

When the image of a projection matrix is free

If P ∈ An×n is a projection matrix whose image is free of rank r, its kernel is not always free,

so the matrix is not always similar to the standard matrix In,r = Diag(Ir, 0n−r) =

[
Ir 0
0 0n−r

]
.

Let us give a simple characterisation for the fact that the image of an idempotent matrix is
free.

Proposition 2.4 Let P ∈ An×n. The matrix P is idempotent and its image is free of rang r if
and only if there exist two matrices X ∈ An×r and Y ∈ Ar×n such that Y X = Ir and P = XY .
Moreover,

1. ImP = ImX ' ImY .

2. For any matrices X ′, Y ′ with same formats as X and Y and such that P = X ′Y ′, there
exists a unique matrix U ∈ GLr(A) such that X ′ = XU and Y = UY ′. In fact U = Y X ′,
U−1 = Y ′X, Y ′X ′ = Ir and the columns of X ′ form a basis of ImP .

Another possible characterisation is that the matrix Diag(P, 0r) is similar to the standard pro-
jection matrix In+r,r.

Proof. Assume that ImP is free of rank r. We take for the columns of X a basis of ImP . So,
there exists a unique matrix Y such that P = XY . Since PX = X (because P 2 = P ) one has
XYX = X. Since X is injective and (Ir − Y X)X = 0 one has Ir = Y X.

Let us assume Y X = Ir and P = XY . Thus P 2 = XYXY = XIrY = XY = P and
PX = XYX = X. Donc ImP = ImX. Moreover the columns of X are independent because
XZ = 0 implies Z = Y XZ = 0.

1) The sequence An In−P−→ An Y−→ Ar is exact: indeed Y (In − P ) = 0 and if Y Z = 0 then
PZ = 0 thus Z = (In − P )Z. So ImY ' An/KerY = An/Im(In − P ) ' ImP .

2) If X ′, Y ′ have same formats as X, Y and P = X ′Y ′, let U = Y X ′ and V = Y ′X. Thus
UV = Y X ′Y ′X = Y PX = Y X = Ir; X

′V = X ′Y ′X = PX = X, so X ′ = XU ; UY ′ =
Y X ′Y ′ = Y P = Y , so Y ′ = V Y . Finally Y ′X ′ = V Y XU = V U = Ir.

Concerning the last characterisation it is a simple application of point 3 in Fact 2.2. 2

For projective modules of constant rank 1 we get the following.

Lemma 2.5 A projection matrix P of rank 1 has its image free if and only if there exist a
column vector x and a row vector y such that yx = 1 and xy = P . Moreover x and y are
unique up to multiplication by a unit as soon as xy = P .
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The Grothendieck semiring GK0 A and the Picard group PicA

GK0 A is the set of isomorphism classes of finitely generated projective modules over A. It is
a semiring for laws ⊕ and ⊗.

Since A is assumed to be commutative, the subsemiring of GK0 A generated by 1 (the
isomorphism class of A) is isomorphic to N, except when A is the trivial ring.

Any element of GK0 A can be represented by an idempotent matrix with coefficients in A.
PicA is the subset of GK0 A whose elements are isomorphism classes of projective modules

of constant rank 1. It is a group for ⊗. The “inverse” of M is its dual. If M ' ImP then
M? ' Im tP . In particular if P is a projection matrix of rank 1, P ⊗ tP is a projection matrix
whose image is a free module of rank 1.

This can be verified directly by applying Lemma 2.5.

PicA and classes of invertible ideals

An ideal a of A is invertible if there exists an ideal b such that ab = aA where a is a regular
element. In this case there exist x1, . . . , xn and y1, . . . , yn in A such that a = 〈x1, . . . , xn〉,
b = 〈y1, . . . , yn〉 and

∑
i xiyi = a. Moreover for all i, j there exists a unique mi,j such that

yixj = ami,j. One deduces that the matrix (mi,j) is an idempotent matrix of rank 1, and its
image is isomorphic to a as A-module.

Two invertible ideals a, b are isomorphic as A-modules if and only if there exist regular
elements a, b such that aa = bb. This allows to see the class group of A (i.e., the group of
classes of invertible ideals) as a subgroup of PicA. In most cases the two groups are identical.

For example if A is integral, any matrix (ai,j) which is idempotent of rank 1 has a regular
element on its diagonal and the coefficients of the corresponding row generate an invertible
ideal isomorphic to the image of the matrix.

Change of ring

Let ρ be an homomorphism A → B. The change of ring from A to B transforms a finitely
generated projective module M over A in a finitely generated projective module ρ?(M) '
M ⊗A B over B. Any B-module isomorphic to such a module ρ?(M) is said “extended” from
A. For projection matrices this amounts to consider the matrix after transformation by the
homomorphism ρ.

This gives an homomorphism GK0 ρ : GK0 A → GK0 B. Whence the natural following
problem: “Is each finitely generated projective module over B extended form a finitely generated
projective module over A?”. In other words: “Is GK0 ρ onto?”.

For example if Z is the subring of A generated by 1A, we know that Z-projective modules
of constant rank are free, and the question “Are projective modules of constant rank extended
from Z?” is equivalent to “Are projective modules of constant rank free?”.

When B = A[X1, . . . , Xm] = A[X], one has the evaluation homomorphism in 0, B
θ−→ A,

with θ ◦ ρ = IdA. This implies that the B-finitely generated projective module M = M(X) is
extended from A if and only if it is isomorphic to M(0) = θ?(M).

Concerning projection matrices, an idempotent matrix P ∈ Bn×n represents a module which
is extended from A if and only if its image is isomorphic to the image of P (0).

If all finitely generated projective B-modules are extended from A then P is similar to P (0),
but it may be easier to show only the isomorphim of the images.

Concerning Pic one has two group homomorphisms PicA
Pic ρ−→ PicA[X]

Pic θ−→ PicA whose
composition is the identity. The first one is injective, the second one surjective, and they are
isomorphisms if and only if the first one is surjective, if and only if the second one is injective.
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The last property means that if a matrix P (X) is idempotent of rank 1 over A[X] and if
Im(P (0)) is free, then Im(P (X)) is free.

In fact if Im(P (0)) is free, then the bloc diagonal matrix Diag(P (0), 01) is similar to a
standard projection matrix In+1,1. As Im(Diag(P (X), 01)) is isomorphic to ImP (X), we get
the following result.

Lemma 2.6 The following are equivalent:

1. The natural homomorphism PicA→ PicA[X] is an isomorphism.

2. If a matrix P (X) ∈ A[X]n×n = (mi,j(X))i,j∈{1,...,n} is idempotent of rank 1 and if P (0) =
In,1, then there exist f1, . . . , fn, g1, . . . , gn ∈ A[X] such that mi,j = figj for all i, j.

Reducing problems to reduced rings: GK0 Ared = GK0 A

We note Ared for A
/√

0.

Proposition 2.7 The natural map GK0(A)→ GK0(Ared) is bijective.

1. Injective: this means that if two finitely generated projective modules E,F over A are
isomorphic over Ared, they are also isomorphic over A.

2. If two idempotent matrices P,Q ∈ An×n are conjugate over Ared, they are also conjugate
over A.

3. Surjective: any finitely generated projective module over Ared comes from a finitely gen-
erated projective module over A.

Proof. 2) Let us note x the object x viewed modulo
√

0. Let C ∈ An×n be a matrix such that

C P C
−1

= Q. Since detC is invertible modulo
√

0, detC is invertible in A and C belongs to
GLn(A). Thus Q = C P C−1. Replacing P by C P C−1 we may assume Q = P and C = In.
Then the matrix A = QP + (In − Q)(In − P ) gives AP = QP = QA and A = In: thus A is
invertible, APA−1 = Q and A = C.
1) Two residually isomorphic finitely generated projective modules E ' ImP and F ' ImQ
are images of residually conjugate matrices: Diag(P, 0m) and Diag(0n, Q) with Diag(P , 0m)
similar To Diag(0n, Q). Thus we can apply 1.
3) Any finitely generated projective module over Ared can be seen as the residual module of a
finitely generated projective module over A: apply Newton method. More precisely let a be
the ideal generated by the coefficients of P 2 − P . If a is contained in the nilradical of A, there
exists k such that a2k

= 0. On the other hand if Q = 3P 2−2P 3, then Q ≡ P mod a and Q2−Q
is a multiple of (P 2−P )2, thus Q2−Q has its coefficients in a2. Iterating k times the operation
P ← 3P 2 − 2P 3 we get the result. 2

Corollary 2.8 The canonical homomorphism PicA→ PicA[X] is an isomorphism if and only
if the canonical homomorphism PicAred → PicAred[X] is an isomorphism.

Convention 2.9 In the sequel we abbreviate the sentence “the canonical homomorphism
PicA→ PicA[X] is an isomorphism” and we write simply “PicA = PicA[X]”.
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Invertible elements of A[X]

Lemma 2.10 If the ring A is reduced, the group homomorphism A× → (A[X])× is an iso-
morphism. In other words if f(X) ∈ A[X] is invertible, then f = f(0) ∈ A×.

It is sufficient to consider A[X]. A direct computation shows that if f(X)g(X) = 1 with
deg(f) ≤ m, m ≥ 1, then the coefficient of degree m of f is nilpotent.

Kronecker’s theorem

Theorem 2.11 Let f, g ∈ A[X] and h = fg. Let a a coefficient of f and b a coefficient of g,
then ab is integral over the subring of A generated by the coefficients of h.

Using “the Kronecker trick” (i.e., remplace each variable Xk by Tmk
for an m� 0) reduces

the problem to univariate polynomials. For univariate polynomials constructive proofs are given
in the literature (cf. [10, 13], and for a survey [3]).

3 Traverso-Swan theorem, with integral rings.

The condition is necessary: Schanuel example

We show that if A is reduced and PicA = PicA[X] then A is seminormal. We use the
characterisation given in Lemma 2.5.

Let b, c be elements in a reduced ring A with b2 = c3. Let B = A[a] = A+aA a reduced ring
containing A with a3 = b, a2 = c. Let f1 = 1+aX, f2 = cX2 = g2 and g1 = (1−aX)(1+cX2).
We have f1g1 + f2g2 = 1, thus the matrix M(X) = (figj)1≤i,j≤2 is idempotent of rank 1. Its
coefficients are in A and M(0) = I2,1. Thus its image is free over B[X]. If it is free over A[X]
then there exist f ′i ’s and g′j’s in A[X] with f ′ig

′
j = figj. By unicity f ′i = ufi with u invertible in

A[X]. Since A is reduced u is invertible in A. Since uf1 ∈ A[X] we get a ∈ A.

NB: we can take B = (A[T ]/〈T 2 − c, T 3 − b〉)red, with a = class of T . If some a does exist in
A, we get B ' A.

Case of a gcd ring

Let us recall that an (integral) gcd ring is an integral ring where two arbitray elements have a
gcd, i.e., an inferior bound for the divisibility relation. Also if A is a gcd ring, then A[X] is a
gcd ring.

Lemma 3.1 If A is an integral gcd ring, PicA = {1}.

Remark. Consequently PicA → PicA[X] is an isomorphism. This works if A is a discrete
field.

Proof. We use the characterisation given in Lemma 2.5. Let P = (mi,j) be an idempotent
matrix of rank 1. Since

∑
imi,i = 1 we may assume that m1,1 is regular. Let f be the gcd

of the first row. We have m1,j = fgj with the gcd of gj’s equal to 1. Since f is regular and
m1,1mi,j = m1,jmi,1 we have g1mi,j = mi,1gj. So g1 divides all the mi,1gj and also their gcd
mi,1. Let us write mi,1 = g1fi. Since g1f1 = m1,1 = fg1 we get f1 = f . Finally the equality
m1,1mi,j = m1,jmi,1 gives f1g1mi,j = f1gjg1fi and mi,j = figj. 2
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Case of an integral normal ring

Lemma 3.2 If A is integral and integrally closed, then PicA = PicA[X].

Proof. We use the characterisation given in Lemma 2.6. Let P (X) = (mi,j(X))i,j=1,...,n be an
idempotent matrix of rank 1 with P (0) = In,1. Let K be the fraction field of A. On K[X] the
module ImP (X) is free. Thus there exist f = (f1(X), . . . , fn(X)) and g = (g1(X), . . . , gn(X))
in K[X]n such that mi,j = figj for all i, j. Moreover since f1(0)g1(0) = 1 and since we can
modify f and g multiplying them by units, we can assume that f1(0) = g1(0) = 1. Thus since
f1gj = m1,j and using Kronecker’s theorem, the coefficients of gj’s are integral over the ring
generated by the coefficients of m1,j’s. In the same way the coefficients of fi’s are integral over
the ring generated by the coefficients of mi,1’s. As A is integrally closed the fi’s and gj’s are
in A[X]. 2

Case of an integral seminormal ring

Traverso [18] has proved the theorem for Nœtherian reduced ring (with some restrictions). For
proofs in the case of integral rings without Nœtherian hypothesis see [1, 15, 11].

Theorem 3.3 If A is integral and seminormal, then PicA = PicA[X].

Proof. We start the proof as in Lemma 3.2. There exist f1(X), . . . , fn(X), g1(X), . . . , gn(X) in
K[X]n such that mi,j = figj for all i, j. Moreover f1(0) = g1(0) = 1. Let us call B the subring
of K generated by A and by the coefficients of fi’s and gj’s. Kronecker’s theorem says that B
is a finite extension of A (i.e., B is a finitely generated A-module). Our aim is now to show
that A = B. Let us call a the conductor of A in B, i.e., {x ∈ B |xB ⊆ A}. It is an ideal of A
and of B. Our aim is now to show that a = 〈1〉, i.e., that C = A/a is trivial.

Lemma 3.4 If A ⊆ B, A seminormal and B reduced, then the conductor a of A in B is a
radical ideal of B.

Proof of Lemma 3.4.
We have to show that if u ∈ B and u2 ∈ a then u ∈ a. Let c ∈ B, we have to show that uc ∈ A.
We have u2c2 ∈ A, and u3c3 = u2(uc3) ∈ A since u2 ∈ a. Since (u3c3)2 = (u2c2)3 there exists
a ∈ A such that a2 = (uc)2 and a3 = (uc)3. Since B is reduced this implies a = uc, and thus
uc ∈ A. 2

Remark. The seminormal closure of a ring A in a reduced overring B is obtained by starting
with A and adding elements x of B such that x2 and x3 are in the previoulsly constructed ring.
Fact 2.1 implies that x is uniquely determined by x2 and x3. So the previous proof can be seen
as a proof of the following lemma.

Lemma 3.5 Let A ⊆ B be reduced rings, A1 the seminorml closure of A in B, and a the
conductor of A1 in B. Then a is a radical ideal of B.

Lemma 3.6 Let A ⊆ B = A[c1, . . . , cq] be reduced rings with B finite over A. Let
a be the conductor of A in B. Assume that a is a radical ideal. Then a is equal to
{x ∈ A |xc1, . . . , xcq ∈ A}.

Proof of Lemma 3.6.
Indeed if xci ∈ A then x`c`i ∈ A for all `, and thus for N big enough xNy ∈ A for all y ∈ B,
thus x is in the radical of a (if d bounds the degrees of integral dependence equations of the
ci’s over A, one can take N = (d− 1)q). 2
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End of the proof of Theorem 3.3, given within classical mathematics.
Let us assume by contradiction that a 6= 〈1〉. One has C = A/a ⊆ B/a = C′. Let p be a
minimal prime of C, P the corresponding ideal of A, S = C\p the complementary part. Since
p is a minimal prime and since C is reduced S−1C = L is a field contained in the reduced ring
S−1C′ = L′.
If x is an object defined over A let us call x what it becomes after the change of ring A→ L′.
The module M is defined by the matrix P whose coefficients are in L[X]. Since L is a field,
ImP is free over L[X]. This implies, by unicity (Lemma 2.5) and since f1(0) = g1(0) = 1,
that the polynomials fi and gj are in L[X] (if u(X) ∈ L[X] is invertible and u(0) = 1, then
u = 1). This means that there exists s ∈ A \ P such that the polynomials sfi and sgj have
their coefficients in A. Thus Lemma 3.6 implies that s ∈ a, a contradiction. 2

The proof we have given for Theorem 3.3 is a simplification of existing ones in the literature.
Nevertheless it is not fully constructive and this gives only the integral case.

Constructive proof (case seminormal and integral)

Remark first that the proof by contradiction shows that the ring A/a is trivial in the following
way: if the ring were not trivial &ct. . . , it should be trivial. In fact the argument proves directly
that the ring is trivial after a slight modification. For this kind of things see Richman’s paper
[16] about the nontrivial use of the trivial ring.

A most difficult task is to eliminate the use of the minimal prime, which is a purely ideal
object appearing in the classical proof. A lemma is needed for doing this job.

The intuitive meaning of the lemma is the following:
Let C be a reduced ring and P a projective module of rank 1 over C[X]; if C is not trivial,
some nontrivial localication S−1C of C have to exist where P becomes free.

In classical mathematics the answer is easy: use the localisation in a minimal prime. This
argument appeared in the proof for the ring C = A/a.

The lemma in this intuitive form “is not true” from a constructive point of view (we lack
primes). But fortunately it is the contraposed form which is needed:
Let C be a reduced ring and P a projective module of rank 1 over C[X]; if each localisation
S−1C of C for which P becomes free is trivial, then C is itself trivial.
And this form “is true” from a constructive point of view, i.e., we get an algorithm!

In fact we need the following version where localisations consist only in inverting one ele-
ment. Here is THE crucial lemma.

Lemma 3.7 (elimination of a minimal prime)
Let C be a reduced ring and P = (mi,j) ∈ C[X]n×n an idempotent matrix of rank 1 such that
P (0) = In,1. Let us assume the following implication:

∀a ∈ C, if ImP is free over C[1/a][X], then a = 0.
Then C is trivial.

Proof that Lemma 3.7 implies Theorem 3.3.
We can rewrite the end of the proof of Theorem 3.3, merely replacing the localisation at the
“purely ideal” minimal prime p by the localisation in one element a.
We have two reduced rings C = A/a ⊆ B/a = C′. We want to show that C is trivial. It is
sufficient to show that C satisfies, with the matrix P mod a, the hypotheses of THE lemma.
So let a be an element of A such that ImP is free over C[1/a][X]. Let C[1/a] = L ⊆ C′[1/a] =
L′, which is a reduced ring. If x is an object defined over A let us call x what it becomes
after the change of ring A→ L′. The module M is free over L[X] and this implies, by unicity
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(Lemma 2.5) and since f1(0) = g1(0) = 1, that the polynomials fi and gj are in L[X].
This means that there exists N ∈ N such that the aNfi and aNgj have their coefficients in A.
Thus Lemmas 3.4 and 3.6 imply a ∈ a, i.e., a = 0 in C. 2

Proof of Lemma 3.7.
A classical proof: let us assume that C non trivial and let p be an minimal prime; since C is
reduced, Cp is a field; thus ImP becomes free over Cp[X]; this implies there exists an a /∈ p

such that ImP becomes free over C[1/a][X]; thus a = 0, a contradiction.
We have a lemma eliminating a minimal prime. But the proof of the elimination lemma is a
proof by contradiction using a minimal prime! This looks like a bad joke.
No, because this abstract proof can be reread dynamically and becomes constructive. Here is
what happens.
Imagine the ring C is a discrete field. Then the fi’s and gj’s are calculated with an algorithm
corresponding to the case of a discrete field.
This algorithm uses disjunction “a is zero or invertible”, for elements a computed by the
algorithm from the coefficients of mi,j’s. But C is only a reduced ring, without equality or
inversibility test. So the algorithm for discrete fields has to be replaced by a tree where we
open two branches each time a question “Is a zero or invertible?” is asked by the algorithm.
We get a tree, huge, but finite. Assume that the branch “a invertible” is put on the left and let
us see what happens at the leaf of the leftmost branch. Some elements a1, . . . , an have been
inverted and the module P became free over C[1/(a1 · · · an)][X].
Conclusion: in the ring C, one has a1 · · · an = 0.
Let us go up one step.
In the ring C[1/(a1 · · · an−1)], we have an = 0. So there was no need to open left branch. What
happens in the branch an = 0? We see what is the computation in the leftmost branch after
this node. We have inverted a1, . . . , an−1, and after we invert b1, . . . , bk (if k = 0 let bk = an−1).
The module P became free on C[1/(a1 · · · an−1b1 · · · bk)][X].
Conclusion: in the ring C, one has a1 · · · an−1b1 · · · bk = 0.
Let us go up one step. Since bk = 0 there was no need to open the left branch. What happens
in the branch bk = 0? . . .
And so on. At the end of the tale we are at the root of the tree and the module P is free on
C[X] = C[1/1][X]. So 1 = 0. 2

If we use Lemma 3.5 instead of Lemma 3.4 we get the following more precise result.

Theorem 3.8 If A is an integral ring and M a projective module of rank 1 over A[X], there
exist c1, . . . , cm in the fraction field of A such that:

1. c2i and c3i are in A[(cj)j<i] for i = 1, . . . ,m,

2. M is free over A[(cj)j≤m][X].

This gives a strongly explicit form of the Traverso-Swan theorem for integral rings.

Annex: zero-dimensional reduced rings

In this part, we give some important fact in the theory of zero-dimensional reduced rings. These
rings are good substitute of fields.

As a consequence we get the general form of the Traverso-Swan theorem.
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Moreover we get a new proof (without computation tree) of Lemma 3.7 (in fact it is essen-
tially the same proof, the tree is only hidden behind idempotents).

Remark. The idea of replacing the fraction field of A by a zero-dimensional reduced ring
containing A is not in [17]: Swan uses arguments much more sophisticated in order to reduce
the general case to the Nœtherian case. The proof of the general case in [2] is thus a striking
improvement of Swan’s proof. Moreover the theorem is new since it gives an algorithm instead
of a purely abstract statement.

A. Basic facts

A ring is zero-dimensional when we have

∀x ∈ A ∃a ∈ A ∃d ∈ N xd = axd+1. (1)

If the ring is reduced d = 1 is sufficient because xd(1− xa) = 0 implies x(1− xa) = 0.
In a commutative ring C, two elements a and b are quasi inverse if one has

a2b = a, b2a = b.

We say also that b is the quasi inverse of a. Indeed it is unique: if a2b = a = a2c, b2a = b and
c2a = c, then since ab = a2b2, ac = a2c2 and a2(c− b) = a− a = 0, we get

c− b = a(c2 − b2) = a(c− b)(c+ b) = a2(c− b)(c2 + b2) = 0.

On the other hand if x2y = x, one sees that xy2 is quasi inverse of x. So:

Fact A.1 A ring is zero-dimensional reduced if and only if each element has a quasi inverse.

Such rings are also called absolutely flat or von Neuman regular (this is mainly used in the
non commutative case, with the equations aba = a and bab = b).

So, zero-dimensional reduced rings can be defined as equational structures, adding a unary
law a 7→ a• satisfying (2)

a2 a• = a, a (a•)2 = a•. (2)

This implies, with ea = aa•,∣∣∣∣∣∣
e2a = ea, eaa = a, eaa

• = a•,
(a•)• = a, (ab)• = a• b•, 0• = 0,
1• = 1, x regular ⇔ x x• = 1, x idempotent ⇔ x = x•.

As an easy consequence:

Fact A.2 A ring is zero-dimensional reduced if and only if any finitely generated ideal is gen-
erated by an idempotent.

The notion of zero-dimensional reduced ring is the good equational generalisation of the
notion of field. A field is nothing but a zero-dimensional reduced ring which is connected (i.e.,
with 0 and 1 as unique idempotents).

Lemma A.3 Let A ⊆ C with C zero-dimensional reduced and a ∈ C. We use the notation
ea = aa•.
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1. ea is the unique idempotent of C such that 〈a〉 = 〈ea〉. Moreover AnnC(a) = AnnC(ea) =
〈1− ea〉

2. C = eaC⊕ (1− ea)C with eaC ' C[1/ea] ' C/〈1− ea〉 and (1− ea)C ' C/〈ea〉
(NB: the ideal eaC is not a subring, but it is a ring with ea as 1).

3. In eaC, a is invertible and in C/〈ea〉 , a is null.

4. If a ∈ A, then eaA[a•] ' A[1/a].

5. More generally, with a, b, c ∈ A one has (eaebec)A[a•, b•, c•] ' A[1/(abc)].

6. If moreover abc = 0, then (eaeb)A[a•, b•, c•] ' A[1/(ab)].

Proof. The 3 first items are easy and well known. Let us see 5. In the ring B =
(eaebec)A[a•, b•, c•], abc is invertible, with inverse a•b•c•. Thus the homomorphism

ψ : A
j−→ A[a•, b•, c•]

x 7→eaebecx−→ B

factorises with a unique θ in the following way

A
π−→ A[1/(abc)]

θ−→ B.

Since A ⊆ C, j is injective and we can identify x ∈ A and j(x). The homomorphism θ is
surjective because θ(1/abc) = a•b•c• = u and in B, a• = bcu, b• = acu, c• = abu. On the other
hand Ker π = AnnA(abc) ⊆ Kerψ and if x ∈ Kerψ, then eaebecx = eabcx = 0, thus abcx = 0.
Let us see 6. Since abc = 0, 0 = eabc = eaebec and in (eaeb)A[a•, b•, c•] = B1 one has c• =
eaebc

• = eaeb(ecc
•) = 0 thus B1 = (eaeb)A[a•, b•] and we conclude with 5. 2

The two last items generalise with an arbitrary finite number of elements of A.

A possible interpretation of Lemma A.3 is that it works as a formalisation of what happens
when we do dynamic computations in a reduced ring “as if” it were a subring of a field. Item 3
says that this dynamical computation is possible (at least if we can find C). Last items show
that this dynamical computation can mimic efficiently the localisation at a minimal prime.

B. Reduced rings as subrings of a zero-dimensional reduced ring

Since the notion of zero-dimensional reduced ring is purely equational, universal algebra says
that any commutative ring generates a zero-dimensional reduced ring (this gives the adjoint
functor to the forgetful functor). We have to see that if the ring A is reduced, the homomor-
phism from A to the zero-dimensional reduced ring it generates is injective.

Lemma B.1 If A ⊆ C with C zero-dimensional reduced, and if x• denotes the quasi inverse
of x, then the ring A[(a•)a∈A] is zero-dimensional (thus it is the least zero-dimensional subring
of C containing A).
Variant: if A ⊆ B are reduced rings, and if each a ∈ A has a quasi inverse a• in B, then the
ring A[(a•)a∈A] is zero-dimensional.

Proof. We have to show that each element of A[(a•)a∈A] has a quasi inverse. Since (ab)• =
a•b• each element of A[(a•)a∈A] can be written

∑
aib

•
i with ai, bi ∈ A. On the other hand

aib
•
i = aib

•
i ri with ri = aia

•
i idempotent. Moreover if we have idempotents r1, . . . , rk they

generate a Boolean algebra containing a basic system of orthogonal idempotents e1, . . . , en such
that ri =

∑
ejri=ej

ej (i ∈ {1, . . . , k}). Finally if e1, . . . , en is a basic system of orthogonal

idempotents in C, if a1, . . . , an, b1, . . . , bn ∈ A, if c =
∑n

i=1 aib
•
i ei and c′ =

∑n
i=1 a

•
i biei, then

c2c′ = c and c′2c = c′, thus c′ = c•. 2
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Lemma B.2 Let A be a reduced ring and a ∈ A. Let B = A[T ]/〈aT 2 − T, a2T − a〉 and
C = Bred. Let a• be the image of T in C. Then

1. C ' (A/〈a〉)red ×A[1/a] and the natural homomorphism A→ C is injective (one iden-
tifies A to a subring of C).

2. a• is quasi inverse of a in C.

3. For any homomorphism A
ϕ−→ A′ such that ϕ(a) has a quasi inverse in B, there exists

a unique homomorphism C
θ−→ A′ such that the homomorphism A→ C

θ−→ A′ is equal
to ϕ.

The proof is left to the reader. The following corollary is a consequence of the strong unicity
property given in Lemma B.2.

Corollary B.3 Let a1, . . . , an ∈ A. Then the ring we obtain by repeating the construction of
Lemma B.2 for each ai does not depend, up to unique isomorphism, of the ordering of ai’s.

Example: let us denote A{a} the ring constructed in Lemma B.2; let a, b, c ∈ A; then there
exists a unique A-homomorphism from ((A{a}){b}){c} to ((A{c}){b}){a} and it is an isomorphism.

Lemma B.2 and Corollary B.3 give the following theorem.

Theorem B.4 Let A be a reduced ring. We denote by Â the ring we obtain as filtered colimit
by iterating the construction of Lemma B.2 (Corollary B.3 says that this works).

Then Â is a zero-dimensional reduced ring and the natural homomorphism A → Â is injec-
tive. Moreover this ring is the zero-dimensional reduced ring generated by A with the precise
following meaning: for any zero-dimensional reduced ring A′, any homomorphism A

ϕ−→ A′

factorises in a unique way via the natural homomorphism A→ Â.

In a shorter form:

Theorem B.5 Any reduced ring A is contained in a zero-dimensional reduced ring C =
A[(a•)a∈A].

C. Zero dimensional reduced rings and fields

We said that the notion of zero-dimensional reduced ring is the good equational generalisation
of the notion of field. In particular any equational consequence of field theory is an equational
consequence of the theory of zero-dimensional reduced rings.

In an informal way we can give the following local-global elementary principle.

Local-global elementary machinery: from discrete fields to zero-dimensional re-
duced rings. Most algorithms that work with discrete fields can be modified in order to work
with zero-dimensional reduced rings, decomposing the ring in the product of two components
each time the algorithm (written for discrete fields) uses the test “Is this element zero or in-
vertible?”. In the first component the element is zero, in the second one it is invertible.

We have written “most” rather than “all” because the result of the algorithm given for
discrete fields has to be written in a form where there is no reference to the connectedness of
a discrete field.

Applying the previous local-global machinery allows to get Theorem C.1 from Lemma 3.1,
as soon as we have seen that this lemma gives an algorithm for discrete fields.

Theorem C.1 Let C be a zero-dimensional reduced ring. Then any projective module of con-
stant rank 1 over C[X] is free.

For the sceptical reader, we give some details in Annex E.
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D. Traverso-Swan’s theorem: general case

New constructive proof of Lemma 3.7
Theorems B.5 and C.1 imply there exists a zero-dimensional reduced ring C = A[(a•)a∈A] ⊇ A
with ImP free over C[X]. This property remains true for a ring B ⊆ C generated by a finite
number of quasi inverses a•1, . . . , a

•
r of elements of A. We write ei = aia

•
i (ei is an idempotent

such that eiai = ai and eia
•
i = a•i ) and e′i = 1−ei. We give the argument for r = 3 but it is clear

that the argument is general. We decompose the ring B in a product of 2r rings. Equivalently
we write the ring as a direct sum of 2r ideals.

B = e1e2e3B⊕ e1e2e′3B⊕ e1e′2e3B⊕ e′1e2e3B⊕ e1e′2e′3B⊕ e′1e2e′3B⊕ e′1e′2e3B⊕ e′1e′2e′3B. (3)

Lemma A.3 item 5 shows that

e1e2e3B ' e1e2e3A[a•1, a
•
2, a

•
3)] ' A[1/(a1a2a3)]

Since the module ImP is free over B[X], it is free over each of the 2r components. In particular
it is free over e1e2e3B[X] ' A[1/(a1a2a3)][X]. From the hypothesis in Lemma 3.7 we get
a1a2a3 = 0, thus e1e2e3 = 0, e1e2e

′
3 = e1e2, etc. . . , and the decomposition (3) becomes

B = e1e2B⊕ e1e3B⊕ e2e3B⊕ e1e′2e′3B⊕ e′1e2e′3B⊕ e′1e′2e3B⊕ e′1e′2e′3B.

Lemma A.3 item 6 shows that e1e2B ' A[1/(a1a2)]. Since P is free over this component we
get a1a2 = 0, thus e1e2 = 0, e1e

′
2 = e1, e

′
1e2 = e2. Similarly a1a3 = 0 = e1e3, a2a3 = 0 = e2e3

and finally e1e
′
2e
′
3 = e1, e

′
1e2e

′
3 = e2, e

′
1e
′
2e3 = e3. We get a new decomposition

B = e1B⊕ e2B⊕ e3B⊕ e′1e′2e′3B.

At the end each ai is null and B = A = A[1/1]. So 1 = 0 in A. 2

Theorem D.1 (Traverso-Swan-Coquand)
If A is a seminormal ring, then PicA = PicA[X].
More precisely if a matrix P (X) ∈ A[X]n×n = (mi,j(X))i,j∈{1,...,n} is idempotent of rank 1
and if P (0) = In,1, then we can construct polynomials f1, . . . , fn, g1, . . . , gn ∈ A[X] such that
mi,j = figj for all i, j.

Proof. This proof is only a slight variation of the one given for the integral case.
We use the characterisation given in Lemma 2.6. Let P (X) = (mi,j(X))i,j=1,...,n be an idem-
potent matrix of rank 1 with P (0) = In,1. Let K be a zero-dimensional reduced ring contain-
ing A. On K[X] the module ImP (X) is free. Thus there exist f = (f1(X), . . . , fn(X))
and g = (g1(X), . . . , gn(X)) in K[X]n such that mi,j = figj for all i, j. Moreover since
f1(0)g1(0) = 1 and since we can modify f and g multiplying them by units, we can assume that
f1(0) = g1(0) = 1. Since f1gj = m1,j and using Kronecker theorem, the coefficients des gj are
integral over the ring generated by the coefficients of m1,j’s. In the same way the coefficients
of fi’s are integral over the ring generated by the coefficients of mi,1’s.
Let B be the subring of K generated by A and by the coefficients of fi’s and gj’s. Thus B is a
finite extension of A (i.e., B is a finitely generated A-module). We have to show A = B. Let
us call a the conductor of A in B. Our aim is now to show a = 〈1〉, i.e., A/a is trivial.
Following Lemma 3.4 a is a radical ideal of B. Lemma 3.6 applies with A ⊆ B. We have
A/a = C ⊆ B/a = C′, which is reduced, and figj = mi,j in B/a . To show that C is trivial, it
is sufficient to show that C satisfies, with the matrix P mod a, the hypotheses of Lemma 3.7.
So let us consider an a ∈ A such that ImP is free over C[1/a][X] and let C[1/a] = L ⊆
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C′[1/a] = L′. If x is an object defined over A let us call x what it becomes after the change of
ring A→ L′. The module M is free over L[X]. This implies, by unicity (Lemma 2.5) and since
f1(0) = g1(0) = 1, that the polynomials fi and gj are in L[X] (if u(X) ∈ L[X] is invertible and
u(0) = 1, then u = 1).
This means that there exists N ∈ N such that the polynomials aNfi and aNgj have their
coefficients in A. Thus Lemma 3.6 implies that a ∈ a, i.e., a = 0 in C. 2

If we use Lemma 3.5 instead of Lemma 3.4 we get the following more precise result.

Theorem D.2 If A is a ring contained in a zero-dimensional reduced ring B and M a projec-
tive module of rank 1 over A[X], there exist c1, . . . , cm in B such that:

1. c2i and c3i are in A[(cj)j<i] for i = 1, . . . ,m,

2. M is free over A[(cj)j≤m][X].

E. Gcd rings

In this section we give a detailed proof of Theorem C.1, without using the local-global elemen-
tary machinery page 13.

Definition E.1 A ring A is called a pp-ring if the annihilator of each element is (a principal
ideal generated by an) idempotent. For a ∈ A, we denote ea the idempotent such that Ann(a) =
〈1− ea〉. So a is regular in A[1/ea] and null in A[1/(1− ea)].

An integral ring is exactly a connected pp-ring.

Lemma E.2 Let x1, . . . , xn be elements of a commutative ring. If one has Ann(xi) = 〈ri〉
where ri’s are idempotent (1 ≤ i ≤ n), let si = 1 − ri, t1 = s1, t2 = r1s2, t3 = r1r2s3, . . .,
tn+1 = r1r2 · · · rn. Then t1, . . . , tn+1 is a basic system of orthogonal idempotents and the element
x = x1 + t2x2 + · · ·+ tnxn satisfies Ann(x1, . . . , xn) = Ann(x) = 〈tn+1〉.

Corollary E.3 Let A be a pp-ring and P = (mij)1≤i,j≤n a square matrix such that Tr(P ) is
regular. Then there exists a matrix J ∈ An×n such that J2 = In and JPJ = JPJ−1 has a
regular coefficient in position (1, 1).

Proof. We apply Lemma E.2 with the elements xi = mi,i. We have tn+1 = 0 because
tn+1Tr(P ) = 0. Thus (t1, . . . , tn) is a basic system of orthogonal idempotents. Let Jk

be the permutation matrix exchanging vectors 1 and k in the canonical basis. Let J =
t1In + t2J2 + · · · + tnJn. We have J2 = In and the coefficient in position (1, 1) of JPJ is
equal to x = t1x1 + t2x2 + · · ·+ tnxn = x1 + t2x2 + · · ·+ tnxn, thus it is regular. 2

A zero-dimensional reduced ring is a pp-ring and if A is a pp-ring, then the total fraction
ring of A, denoted by Frac(A), is a zero-dimensional reduced ring: for all a, ã = (1 − ea) + a
is regular and a/ã = a• is a quasi inverse of a in Frac(A). Moreover, for all a ∈ A, A[1/a] is a
pp-ring and Frac(A[1/a]) can be indentified with eaFrac(A) ' Frac(A)[1/a].

Finally, if A is a pp-ring then A[X] is a pp-ring and the annihilator of a polynomial f is
generated by the idempotent equal to the product of annihilators of the coefficients.

In a pp-ring if a divides b and b divides a, one has ea = eb and ua = b with an invertible
element u. This allows to develop a theory of gcd pp-rings analogous to the theory of gcd
domains.
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Definition E.4 A commutative regular monoid is called a gcd monoid if any two elements do
have a greatest common divisor. If g is a gcd for a and b we write g = gcd(a, b) (in fact a gcd
is defined up to a unit).

Lemma E.5 Let A be a pp-ring. The following are equivalent:

1. The monoid of regular elements is a gcd monoid.

2. For any idempotent e regular elements of A[1/e] give a gcd monoid.

3. Two arbitrary elements have a gcd.

In this case we say that A is a gcd pp-ring.

Proof. For example, to show that 1. implies 2., one introduces, for a ∈ eA with a regular in
A[1/e], the element ã = (1− ea) + a which is regular in A. If g is the gcd of ã and c̃ in A, the
same element g, viewed in A[1/e], is the gcd of a and c. 2

A gcd pp-ring which is connected is a usual gcd ring. A zero-dimensional reduced ring is a
gcd pp-ring.

Let A be a gcd pp-ring and a polynomial f(X) =
∑n

k=0 fkX
k, we denote by G(f) the gcd

(defined up to a unit) of the coefficients of f . If G(f) = 1 one says that f is primitive1.

We have to see that arguments in the proof of Lemma 3.1 work also for gcd pp-rings. In
particular, if A is a gcd pp-ring, so is A[X]. So for any zero-dimensional reduced ring A, the
ring A[X] is a gcd pp-ring and thus any projective module of constant rank 1 over A[X] is free.

Let us see the first argument in the proof: Let P = (mi,j) be an idempotent matrix of rank
1. Since

∑
imi,i = 1 we can assume that m1,1 is regular. Corollary E.3 gives the answer.

For the end of the proof we look at the “bible” [14], where all proofs are algorithmic (and
often very simple).

Lemma E.6 (cf. Theorem 1.1 page 108 in [14])
Let a, b, c be elements of a gcd pp-ring. Then

1. gcd(gcd(a, b), c) = gcd(a, gcd(b, c)).

2. c · gcd(a, b) = gcd(ca, cb).

3. If x = gcd(a, b), then gcd(a, bc) = gcd(a, xc).

4. If a|bc and gcd(a, b) = eb then a|ebc.

Proof. If one of the 3 elements a, b, c is null, all is clear. In the general case let ri be an element
of the basic system of orthogonal idempotents generated by ea, eb and ec. Each element a, b, c
is null or regular in A[1/ri]. The proof given in [14] for gcd monoids works for the component
in which a, b, c are regular. 2

A consequence of item 2 in Lemma E.6 is that in a gcd pp-ring, a primitive polynomial is
a regular element of A[X].

1 Warning. This conflicts another traditional terminology: f is primitive when the ideal of coefficients of f
contains 1.
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Lemma E.7 (Lemma 4.2 page 123 in [14]) Let A be a gcd pp-ring, K = Frac(A) and f ∈ K[X].
We can find a primitive polynomial g ∈ A[X] and c ∈ K such that f = cg. If we have another
decomposition f = c′g′ then there exists u ∈ A× such that c = uc′.

Proof. If f = 0 we take g = 1 and c = 0. If G(f) is regular, the proof in [14] works,
replacing “6= 0” by “regular”. Thus we decompose the ring in two components by using the
idempotent eG(f). 2

Lemma E.8 (Gauss Lemma, Lemma 4.3 page 123 in [14])
Let A be a gcd pp-ring and f, g ∈ A[X]. Then G(f)G(g) = G(fg).

Proof. Let (ri) be the basic system of orthogonal idempotents generated by ec’s for all coeffi-
cients c of f and g. In each ring A[1/ri] polynomials f and g have a well defined degree2. Let
us see that the elegant proof by induction on n+m = deg(f) + deg(g) given in [14] works.
We reason by induction on m+ n. By distributivity (item 2 in Lemma E.6) and using Lemma
E.7, we are reduced to the case where G(f) = G(g) = 1. Let c = G(fg) and d = gcd(fn, c).
Then d divides (f − fnX

n) g. If f = fnX
n the result is clear. In the other case, by induction

hypothesis d divides G(f − fnX
n) G(g) = G(f − fnX

n), thus d divides f and d = 1. So
gcd(fn, c) = 1. Similarly gcd(gm, c) = 1 and since c divides fngm, c = 1. 2

Finally proofs in [14] for the two following results do work in our new context.

Corollary E.9 (Corollary 4.4 page 123 in [14])
Let A be a gcd pp-ring, f, g ∈ A[X] and K = Frac(A). Then f divides g in A[X] if and only
if f divides g in K[X] and G(f) divides G(g).

Theorem E.10 (Theorem 4.6 page 124 in [14])
If A is a gcd pp-ring, then so is A[X].

In fact all these verifications are quasi automatic. Proofs in [14], which are also algorithms,
are based on the disjunction “x = 0 or x regular” in a gcd integral ring. In the case of gcd
pp-rings, it is sufficient to realise the disjunction by decomposing the ring in two components
by using the idempotent ex.
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