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Abstract

The Traverso-Swan theorem says that a reduced ring A is seminormal if and only if
the natural homomorphism Pic A — Pic A[X] is an isomorphism ([18, 17]). We give here
all the details needed to understand the elementary constructive proof for this result given
by Thierry Coquand in [2].

This example is typical of a new constructive method. The final proof is simpler than
the initial classical one. More important: the classical argument by absurdum using “an
abstract ideal object” is deciphered with a general technique based on the following idea:
purely ideal objects constructed using TEM and Choice may be replaced by concrete
objects that are “finite approximations” of these ideal objects.

1 Introduction

Quant a moi je proposerais de s’en tenir aux regles suivantes:

1. Ne jamais envisager que des objets susceptibles d’étre définis
en un nombre fini de mots;

2. Ne jamais perdre de vue que toute proposition sur l'infini doit
étre la traduction, I’énoncé abrégé de propositions sur le fini;

3. Eviter les classifications et les définitions non prédicatives.

Henri Poincaré,
in La logique de linfini (Revue de Métaphysique et de Morale 1909).
Reprint in Derniéres pensées, Flammarion.

The Traverso-Swan theorem says that a reduced ring A is seminormal if and only if the
natural homomorphism Pic A — Pic A[X] is an isomorphism ([18, 17]). We give here all the
details needed to understand the elementary constructive proof for this result given by Thierry
Coquand in [2].

First, we have to give a classical proof (using TEM and Choice) as elementary as possible.
After this first simplification we have to remove remaining non constructive arguments. Here
it is a proof by absurdum based on the introduction of an abstract ideal object, which is a
minimal prime.
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The deciphering of this non constructive argument is based on the so called “dynamical
method”.

This example is paradigmatic of a new general constructive method inspired by the following
semantic: purely ideal objects constructed using TEM and Choice may be replaced by concrete
objects that are finite approximations of these ideal objects.

An important step, where this method was introduced in Computer Algebra from an effi-
ciency point of view, was the computer algebra system D5 [9]: here we see that it is possible
to compute inside the algebraic closure of an arbitrary computable field, contrarily to the well
known fact that such an algebraic closure cannot exist constructively as a static object. So D5
told us that, from a constructive point of view, the algebraic closure of an arbitrary computable
field does exist, not as a static object, but as a dynamical one.

In the paper [8] the dynamical method is explained on the example of abstract proofs, via
model theory, of results similar to the Hilbert Nullstellensatz. Here ideal abstract objects are the
models of a coherent first order theory. These models have to exist in classical mathematics: this
is the compactness theorem in (classical) model theory. When the classical proof is deciphered
in a constructive one, each one of these models is replaced by “a finite amount of information
concerning it”.

In the papers [4, 7], chains of prime ideals that are used in classical mathematics in order
to define the Krull dimension are replaced by finite sequences of elements of the ring. In
this way we obtain an elementary definition of the Krull dimension, without using any prime
ideal. The Krull dimension of usual rings matches the elementary definition in a constructive
way. So theorems in commutative algebra that have in their hypothesis a bound on the Krull
dimension can now be reread in a constructive way, and for several important ones a constructive
proof, much more precise than the classical one, has been found. E.g., Serre’s “splitting-oft”,
“stable range” and “cancellation” theorems of Bass, and Forster-Swan theorem. Moreover the
constructive versions ([5, 6]) are an improvement of the most sophisticated classical versions of
these theorems given by R. Heitmann in his remarkable “nonNcetherian” 1984 paper [12].

Finally let us mention that in [19], I. Yengui has shown how to reread in a dynamical way
classical proofs that use maximal ideals.

In the example given in the present paper, we get a proof which is simpler and more
elegant than the classical ones. But the most important fact is that the classical argument “by
absurdum and using a purely ideal object” is deciphered by following the general method we
have sketched. The localisation at a generic minimal prime p is replaced by a tree computation
where we try to make invertible all elements that appear in the computational proof. The tree
comes from the fact that in the classical reasoning one uses an argument saying “any element
x of the ring is either inside or outside the generic minimal prime p we consider”. Since the
prime is minimal, a priori  have to be outside of p. We have to use the branch “x inside p”
only in the case where the computation shows that 0 becomes invertible if x is outside p.

We shall explain first what happens with an integral ring. We give the proof of the general
case in the Annex.

2 Preliminaries

A, B, C are commutative rings. Used without more precision an “homomorphism” is always
a ring homomorphism.



Seminormal rings

An integral ring A is said to be seminormal if whenever b?> = ¢3 # 0 the element a = b/c of
the fraction field is in A. Remark that a® = b and a? = c.

An arbitrary ring A is said to be seminormal if whenever b? = ¢3, there exists a € A such
that a® = b and a® = ¢. This implies A is reduced: if b* = 0 then b* = 03, so we get an a € A
with a® = b and a® = 0, thus b = 0.

In a ring if 2% = y? and 2® = »? then (x — y)3 = 0. So:

Fact 2.1 In a reduced ring x> = y? and x® = y> imply x = y.

Consequently the element a here upon is always unique. Moreover Annb = Annc = Anna.

The category of finitely generated projective A-modules

A finitely generated projective module is a module M isomorphic to a direct summand of a
finite rank free module: M & M’ ~ A™. Equivalenty, it is a module isomorphic to the image
of a projection matrix.

A A-linear map ¢ : M — N between finitely generated projective modules with M & M’ ~
A™ and NN’ ~ A" can be given by the linear map ¢ : A™ — A" defined by ¢(z®x') = ().

In other words the category of finitely generated projective modules over A is equivalent to
the category whose objects are idempotent matrices with coefficients in A, a morphism from P
to @ being a matrix H such that QH = H = HP. In particular the identity of P is represented
by P.

Fact 2.2 If M and N are represented by idempotent matrices P = (p;;)ijer € A and
Q = (qre)koes € A7* then:

1. The direct sum M @ N is represented by Diag(P, Q) = [P 0 ] )

0 @Q
2. The tensor product M @ N is represented by the Kronecker product

P®Q = (T(ik).6.0) (ih).(i.0)el xJs Where 7 k) (o) = Di ik e-
3. M and N are isomorphic if and only if matrices Diag(P,0,,) and Diag(0,,, Q) are similar.

Proof. 3. Remark that the projection on M in M @& M’ @& A" is represented by the matrix
Diag(P,0,,) and the projection on N in A @& N @ N’ is represented by the matrix Diag(0,,, Q).
Wrinting A™ @& A™ as M & M’ & N & N’ we see that the two projections are conjugate by the
automorphism exchanging M and N. a

Rank of a finitely generated projective module

If o : M — M is an endomorphism of the finitely generated projective A-module M image of the
idempotent matrix P and if H represents ¢ (with H = PH = HP),let N = Ker P. So M@N =
A™ and we can define the determinant of ¢ by det(p) = det(¢ & 1d,,) = det(H + (I, — P)).

Let px be the multiplication by X inside the A[X]-module M[X] (this module, extended
of M from A, is also represented by the matrix P), then det(ux) = Ry (X) = r(X) is a
polynomial satisfying 7(XY) = r(X)r(Y) and r(1) = 1. In other words its coefficients are a
basic system of orthogonal idempotents. The module is said of rank k if r(X) = X*.

A direct computation shows the following fact.
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Fact 2.3 A matriz P = (p; ;) is a projection matriz whose image is a projective module of
constant rank 1 if and only if the following properties are satisfied

. /\2 P =0, i.e., all 2 x 2 minors are null,

When the image of a projection matrix is free

If P € A™"™ is a projection matrix whose image is free of rank r, its kernel is not always free,

.. . . . I,
so the matrix is not always similar to the standard matrix I,,,, = Diag(l,,0,—,) = [ 0 0 0 } .

Let us give a simple characterisation for the fact that the image of an idempotent matrix is
free.

Proposition 2.4 Let P € A™*". The matrix P is idempotent and its image is free of rang r if
and only if there exist two matrices X € A™" and Y € A™" such that Y X =1, and P = XY
Moreover,

] ImP=ImX ~ImY.

2. For any matrices X', Y with same formats as X and Y and such that P = X'Y’, there
exists a unique matriz U € GL.(A) such that X' = XU and Y =UY". In fact U = Y X/,
Ul=Y'X,Y'X' =1, and the columns of X' form a basis of Im P.

Another possible characterisation is that the matriz Diag(P,0,.) is similar to the standard pro-
jection matriz L, ,.

Proof. Assume that Im P is free of rank r. We take for the columns of X a basis of Im P. So,
there exists a unique matrix Y such that P = XY. Since PX = X (because P? = P) one has
XY X = X. Since X is injective and (I, — Y X)X = 0 one has [, = Y X.

Let us assume YX = [, and P = XY. Thus P? = XYXY = XL.Y = XY = P and
PX = XYX = X. Donc Im P =Im X. Moreover the columns of X are independent because
XZ =01implies Z =Y XZ = 0.

1) The sequence A" =% A" . A" is exact: indeed Y(I, — P) = 0 and if YZ = 0 then
PZ=0thus Z=(I,— P)Z. SoImY ~ A"/KerY = A"/Im(I,, — P) ~Im P.

2) If X' Y’ have same formats as X,Y and P = X'Y’  let U = YX' and V = Y’X. Thus
UV =YXY'X =YPX =YX =1, XV =XYX=PX = X,s0 X = XU, UY' =
YXY =YP=Y,s0Y' =VY. Finally YYX' =VYXU =VU =1,.

Concerning the last characterisation it is a simple application of point 3 in Fact 2.2. a
For projective modules of constant rank 1 we get the following.

Lemma 2.5 A projection matriz P of rank 1 has its image free if and only if there exist a
column vector x and a row vector y such that yr = 1 and xy = P. Moreover x and y are
unique up to multiplication by a unit as soon as xy = P.



The Grothendieck semiring GKy A and the Picard group Pic A

GKg A is the set of isomorphism classes of finitely generated projective modules over A. It is
a semiring for laws @ and ®.

Since A is assumed to be commutative, the subsemiring of GKy A generated by 1 (the
isomorphism class of A) is isomorphic to N, except when A is the trivial ring.

Any element of GKy A can be represented by an idempotent matrix with coefficients in A.

Pic A is the subset of GKy A whose elements are isomorphism classes of projective modules
of constant rank 1. It is a group for ®. The “inverse” of M is its dual. If M ~ Im P then
M* ~ Im *P. In particular if P is a projection matrix of rank 1, P ® P is a projection matrix
whose image is a free module of rank 1.

This can be verified directly by applying Lemma 2.5.

Pic A and classes of invertible ideals

An ideal a of A is invertible if there exists an ideal b such that ab = aA where a is a regular
element. In this case there exist zy,...,x, and y;,...,y, in A such that a = (z1,...,2,),
b= (y1,...,yn) and > . 2;y;, = a. Moreover for all i, j there exists a unique m;; such that
yix; = am; ;. One deduces that the matrix (m; ;) is an idempotent matrix of rank 1, and its
image is isomorphic to a as A-module.

Two invertible ideals a, b are isomorphic as A-modules if and only if there exist regular
elements a,b such that aa = bb. This allows to see the class group of A (i.e., the group of
classes of invertible ideals) as a subgroup of Pic A. In most cases the two groups are identical.

For example if A is integral, any matrix (a; ;) which is idempotent of rank 1 has a regular
element on its diagonal and the coefficients of the corresponding row generate an invertible
ideal isomorphic to the image of the matrix.

Change of ring

Let p be an homomorphism A — B. The change of ring from A to B transforms a finitely
generated projective module M over A in a finitely generated projective module p, (M) =~
M ®4 B over B. Any B-module isomorphic to such a module p,(M) is said “extended” from
A. For projection matrices this amounts to consider the matrix after transformation by the
homomorphism p.

This gives an homomorphism GKyp : GKgA — GKyB. Whence the natural following
problem: “Is each finitely generated projective module over B extended form a finitely generated
projective module over A?”. In other words: “Is GKy p onto?”.

For example if Z is the subring of A generated by 14, we know that Z-projective modules
of constant rank are free, and the question “Are projective modules of constant rank extended
from Z?” is equivalent to “Are projective modules of constant rank free?”.

When B = A[Xq,..., X,,] = A[X], one has the evaluation homomorphism in 0, B R A,
with § o p = Ida. This implies that the B-finitely generated projective module M = M (X) is
extended from A if and only if it is isomorphic to M (0) = 6,(M).

Concerning projection matrices, an idempotent matrix P € B™*" represents a module which
is extended from A if and only if its image is isomorphic to the image of P(0).

If all finitely generated projective B-modules are extended from A then P is similar to P(0),
but it may be easier to show only the isomorphim of the images.

Concerning Pic one has two group homomorphisms Pic A P8 pic A[X] P? Pic A whose
composition is the identity. The first one is injective, the second one surjective, and they are
isomorphisms if and only if the first one is surjective, if and only if the second one is injective.



The last property means that if a matrix P(X) is idempotent of rank 1 over A[X] and if
Im(P(0)) is free, then Im(P(X)) is free.

In fact if Im(P(0)) is free, then the bloc diagonal matrix Diag(P(0),0;) is similar to a
standard projection matrix I,,411. As Im(Diag(P(X),0;)) is isomorphic to Im P(X), we get
the following result.

Lemma 2.6 The following are equivalent:
1. The natural homomorphism Pic A — Pic A[X] is an isomorphism.

2. If a matriz P(X) € AX]"" = (m;;(X))ijeq1,...n} @8 idempotent of rank 1 and if P(0) =

,,,,,

L1, then there exist fi,..., fu,01,...,9n € A[X] such that m; ; = fig; for alli,j.

Reducing problems to reduced rings: GKyA,.q = GKy A
We note A,oq for A / V0.

Proposition 2.7 The natural map GKo(A) — GKo(Ayeq) @s bijective.

1. Injective: this means that if two finitely generated projective modules E, F over A are
1somorphic over A,q, they are also isomorphic over A.

2. If two idempotent matrices P,Q € A™*™ are conjugate over A.eq, they are also conjugate
over A.

3. Surjective: any finitely generated projective module over A..q comes from a finitely gen-
erated projective module over A.

Proof. 2) Let us note 7 the object x viewed modulo v/0. Let C' € A™™ be a matrix such that

CPC ' = Q. Since det C' is invertible modulo v/0, det C' is invertible in A and C' belongs to
GL,(A). Thus Q = C PC-'. Replacing P by C PC~! we may assume Q = P and C = I,,.
Then the matrix A = QP + (I, — Q)(I, — P) gives AP = QP = QA and A = I, thus A is
invertible, APA~' = Q and A = C.

1) Two residually isomorphic finitely generated projective modules £ ~ Im P and F' ~ Im @
are images of residually conjugate matrices: Diag(P,0,,) and Diag(0,,Q) with Diag(P,0,,)
similar To Diag(0,, Q). Thus we can apply 1.

3) Any finitely generated projective module over A,.q can be seen as the residual module of a
finitely generated projective module over A: apply Newton method. More precisely let a be
the ideal generated by the coefficients of P? — P. If a is contained in the nilradical of A, there
exists k such that a2 = 0. On the other hand if Q = 3P% —2P3, then Q = Pmod a and Q> —Q
is a multiple of (P? — P)?, thus Q% — @ has its coefficients in a®. Iterating k times the operation
P « 3P? — 2P3 we get the result. O

Corollary 2.8 The canonical homomorphism Pic A — Pic A[X] is an isomorphism if and only
if the canonical homomorphism Pic A,eq — Pic ALeq|X] is an isomorphism.

Convention 2.9 In the sequel we abbreviate the sentence “the canonical homomorphism
Pic A — Pic A[X] is an isomorphism” and we write simply ‘Pic A = Pic A[X]”.



Invertible elements of A[X]

Lemma 2.10 If the ring A is reduced, the group homomorphism A* — (A[X])* is an iso-
morphism. In other words if f(X) € A[X] is invertible, then f = f(0) € A*.

It is sufficient to consider A[X]. A direct computation shows that if f(X)g(X) = 1 with
deg(f) < m, m > 1, then the coefficient of degree m of f is nilpotent.

Kronecker’s theorem

Theorem 2.11 Let f,g € A[X] and h = fg. Let a a coefficient of f and b a coefficient of g,
then ab is integral over the subring of A generated by the coefficients of h.

Using “the Kronecker trick” (i.e., remplace each variable X, by T™" for an m > 0) reduces
the problem to univariate polynomials. For univariate polynomials constructive proofs are given
in the literature (cf. [10, 13], and for a survey [3]).

3 Traverso-Swan theorem, with integral rings.

The condition is necessary: Schanuel example

We show that if A is reduced and Pic A = Pic A[X]| then A is seminormal. We use the
characterisation given in Lemma 2.5.

Let b, ¢ be elements in a reduced ring A with b* = ¢*. Let B = AJa] = A+aA areduced ring
containing A with a® = b, a®> = c. Let f; = 1+aX, fo = cX? = gy and g; = (1 —aX)(1+cX?).
We have fig1 + fage = 1, thus the matrix M (X) = (figj)1<ij<2 is idempotent of rank 1. Its
coeflicients are in A and M (0) = Io;. Thus its image is free over B[X]. If it is free over A[X]
then there exist f;’s and g}’s in A[X] with f/¢’ = fig;. By unicity f; = uf; with u invertible in
A[X]. Since A is reduced u is invertible in A. Since uf; € A[X] we get a € A.

NB: we can take B = (A[T]/(T? — ¢,T? — b)),.q, with a = class of T If some a does exist in
A, we get B~ A.

Case of a gcd ring

Let us recall that an (integral) ged ring is an integral ring where two arbitray elements have a
ged, i.e., an inferior bound for the divisibility relation. Also if A is a ged ring, then A[X] is a
gcd ring.

Lemma 3.1 If A is an integral ged ring, Pic A = {1}.

Remark.  Consequently Pic A — Pic A[X] is an isomorphism. This works if A is a discrete
field.

Proof. We use the characterisation given in Lemma 2.5. Let P = (m, ;) be an idempotent
matrix of rank 1. Since ), m;; = 1 we may assume that m,; is regular. Let f be the ged
of the first row. We have m,; = fg; with the ged of g;’s equal to 1. Since f is regular and
mi1m;; = my;m;1 we have gym;; = m;19;. So g divides all the m,;;g; and also their ged
m;1. Let us write m; 1 = ¢1f;. Since gi1fi = mi1 = fg1 we get fi = f. Finally the equality
MM = myjm; gives figimi; = fig;91fi and m, ; = fig;. O



Case of an integral normal ring

Lemma 3.2 If A is integral and integrally closed, then Pic A = Pic A[X].

Proof. We use the characterisation given in Lemma 2.6. Let P(X) = (m;;(X))ij=1..n be an
idempotent matrix of rank 1 with P(0) = I,,;. Let K be the fraction field of A. On K[X] the
module Im P(X) is free. Thus there exist f = (f1(X),..., fo(X)) and g = (¢1(X), ..., gn(X))
in K[X]|" such that m;; = f;g; for all 4,j. Moreover since f1(0)g;(0) = 1 and since we can
modify f and g multiplying them by units, we can assume that f;(0) = ¢;(0) = 1. Thus since
fig; = m; and using Kronecker’s theorem, the coefficients of g;’s are integral over the ring
generated by the coefficients of m; ;’s. In the same way the coefficients of f;’s are integral over
the ring generated by the coefficients of m;;’s. As A is integrally closed the f;’s and g;’s are
in A[X]. O

Case of an integral seminormal ring

Traverso [18] has proved the theorem for Neetherian reduced ring (with some restrictions). For
proofs in the case of integral rings without Ncetherian hypothesis see [1, 15, 11].

Theorem 3.3 If A is integral and seminormal, then Pic A = Pic A[X].

Proof. We start the proof as in Lemma 3.2. There exist fi(X),..., fu(X),01(X), ..., g.(X) in
KI[X]" such that m; ; = f;g; for all ¢, 5. Moreover f1(0) = g1(0) = 1. Let us call B the subring
of K generated by A and by the coefficients of f;’s and g;’s. Kronecker’s theorem says that B
is a finite extension of A (i.e., B is a finitely generated A-module). Our aim is now to show
that A = B. Let us call a the conductor of A in B, i.e., {x € B|2B C A}. It is an ideal of A
and of B. Our aim is now to show that a = (1), i.e., that C = A/a is trivial.

Lemma 3.4 If A C B, A seminormal and B reduced, then the conductor a of A in B s a
radical ideal of B.

Proof of Lemma 3.4.

We have to show that if u € B and u? € a then u € a. Let ¢ € B, we have to show that uc € A.
We have u?c?* € A, and u3c® = u?(uc®) € A since u? € a. Since (u*c®)? = (u?c?)? there exists
a € A such that a®> = (uc)? and a® = (uc)®. Since B is reduced this implies a = uc, and thus
uc € A. O

Remark. The seminormal closure of a ring A in a reduced overring B is obtained by starting
with A and adding elements = of B such that 22 and 2? are in the previoulsly constructed ring.
Fact 2.1 implies that x is uniquely determined by 2% and 2. So the previous proof can be seen
as a proof of the following lemma.

Lemma 3.5 Let A C B be reduced rings, Ay the seminorml closure of A in B, and a the
conductor of A1 in B. Then a is a radical ideal of B.

Lemma 3.6 Let A C B = Alcy,...,c,] be reduced rings with B finite over A. Let
a be the conductor of A in B. Assume that a is a radical ideal. Then a is equal to
{r e Alzcy,...,xc, € A}.

Proof of Lemma 3.6.

Indeed if zc; € A then 2c¢t € A for all ¢, and thus for N big enough 2Ny € A for all y € B,
thus x is in the radical of a (if d bounds the degrees of integral dependence equations of the
¢;’s over A, one can take N = (d — 1)q). O



End of the proof of Theorem 3.3, given within classical mathematics.

Let us assume by contradiction that a # (1). One has C = A/a C B/a = C'. Let p be a
minimal prime of C, ‘B the corresponding ideal of A, S = C\ p the complementary part. Since
p is a minimal prime and since C is reduced S™'C = L is a field contained in the reduced ring
S—l¢ =1

If z is an object defined over A let us call T what it becomes after the change of ring A — L/.
The module M is defined by the matrix P whose coefficients are in L[X]. Since L is a field,
Im P is free over L[X]. This implies, by unicity (Lemma 2.5) and since f;(0) = ¢1(0) = 1,
that the polynomials f; and g; are in L[X] (if u(X) € L[X] is invertible and u(0) = 1, then
u = 1). This means that there exists s € A \ P such that the polynomials sf; and sg; have
their coefficients in A. Thus Lemma 3.6 implies that s € a, a contradiction. O

The proof we have given for Theorem 3.3 is a simplification of existing ones in the literature.
Nevertheless it is not fully constructive and this gives only the integral case.

Constructive proof (case seminormal and integral)

Remark first that the proof by contradiction shows that the ring A /a is trivial in the following
way: if the ring were not trivial &ct. . ., it should be trivial. In fact the argument proves directly
that the ring is trivial after a slight modification. For this kind of things see Richman’s paper
[16] about the nontrivial use of the trivial ring.

A most difficult task is to eliminate the use of the minimal prime, which is a purely ideal
object appearing in the classical proof. A lemma is needed for doing this job.

The intuitive meaning of the lemma is the following:
Let C be a reduced ring and P a projective module of rank 1 over C[X]; if C is not trivial,
some nontrivial localication ST C of C have to exist where P becomes free.

In classical mathematics the answer is easy: use the localisation in a minimal prime. This
argument appeared in the proof for the ring C = A/a.

The lemma in this intuitive form “is not true” from a constructive point of view (we lack
primes). But fortunately it is the contraposed form which is needed:
Let C be a reduced ring and P a projective module of rank 1 over C[X]; if each localisation
S™LC of C for which P becomes free is trivial, then C is itself trivial.
And this form “is true” from a constructive point of view, i.e., we get an algorithm!

In fact we need the following version where localisations consist only in inverting one ele-
ment. Here is THE crucial lemma.

Lemma 3.7 (elimination of a minimal prime)
Let C be a reduced ring and P = (m; ;) € C[X]|™™ an idempotent matriz of rank 1 such that
P(0) =1,1. Let us assume the following implication:
Va € C, if Im P is free over C[1/a][X], then a = 0.
Then C 1is trivial.

Proof that Lemma 3.7 tmplies Theorem 3.3.

We can rewrite the end of the proof of Theorem 3.3, merely replacing the localisation at the
“purely ideal” minimal prime p by the localisation in one element a.

We have two reduced rings C = A/a C B/a = C’. We want to show that C is trivial. It is
sufficient to show that C satisfies, with the matrix P mod a, the hypotheses of THE lemma.
So let a be an element of A such that Im P is free over C[1/a][X]. Let C[1/a] =L C C'[1/a] =
L', which is a reduced ring. If z is an object defined over A let us call T what it becomes
after the change of ring A — L’. The module M is free over L[X] and this implies, by unicity
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(Lemma 2.5) and since f;(0) = g;(0) = 1, that the polynomials f; and g; are in L[X].
This means that there exists N € N such that the a” f; and a” g; have their coefficients in A.
Thus Lemmas 3.4 and 3.6 imply a € a, i.e., a =0 in C. O

Proof of Lemma 3.7.

A classical proof: let us assume that C non trivial and let p be an minimal prime; since C is
reduced, C, is a field; thus Im P becomes free over C,[X]; this implies there exists an a ¢ p
such that Im P becomes free over C[1/a][X]; thus a = 0, a contradiction.

We have a lemma eliminating a minimal prime. But the proof of the elimination lemma is a
proof by contradiction using a minimal prime! This looks like a bad joke.

No, because this abstract proof can be reread dynamically and becomes constructive. Here is
what happens.

Imagine the ring C is a discrete field. Then the f;’s and g¢;’s are calculated with an algorithm
corresponding to the case of a discrete field.

This algorithm uses disjunction “a is zero or invertible”, for elements a computed by the
algorithm from the coefficients of m; ;’s. But C is only a reduced ring, without equality or
inversibility test. So the algorithm for discrete fields has to be replaced by a tree where we
open two branches each time a question “Is a zero or invertible?” is asked by the algorithm.
We get a tree, huge, but finite. Assume that the branch “a invertible” is put on the left and let
us see what happens at the leaf of the leftmost branch. Some elements a4, ..., a, have been
inverted and the module P became free over C[1/(ay - - a,)][X].

Conclusion: in the ring C, one has ay - - -a, = 0.

Let us go up one step.

In the ring C[1/(ay - - - an—1)], we have a,, = 0. So there was no need to open left branch. What
happens in the branch a, = 07 We see what is the computation in the leftmost branch after
this node. We have inverted a4, ..., a,_1, and after we invert by, ... by (if £ = 0let by = a,,_1).
The module P became free on C[1/(ay - - - an—1by - - - by)][X].

Conclusion: in the ring C, one has ay---a,_1b1---bp = 0.

Let us go up one step. Since b, = 0 there was no need to open the left branch. What happens
in the branch b, =07 ...

And so on. At the end of the tale we are at the root of the tree and the module P is free on
C[X] =CJ[1/1][X]. So1=0. O

If we use Lemma 3.5 instead of Lemma 3.4 we get the following more precise result.

Theorem 3.8 If A is an integral ring and M a projective module of rank 1 over A[X], there
exist ¢y, ...,y in the fraction field of A such that:

1. ¢ and & are in Al(c;)j<i| fori=1,...,m,

2. M is free over A[(c;);<m][X].

This gives a strongly explicit form of the Traverso-Swan theorem for integral rings.

Annex: zero-dimensional reduced rings

In this part, we give some important fact in the theory of zero-dimensional reduced rings. These
rings are good substitute of fields.
As a consequence we get the general form of the Traverso-Swan theorem.
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Moreover we get a new proof (without computation tree) of Lemma 3.7 (in fact it is essen-
tially the same proof, the tree is only hidden behind idempotents).

Remark.  The idea of replacing the fraction field of A by a zero-dimensional reduced ring
containing A is not in [17]: Swan uses arguments much more sophisticated in order to reduce
the general case to the Noetherian case. The proof of the general case in [2] is thus a striking
improvement of Swan’s proof. Moreover the theorem is new since it gives an algorithm instead
of a purely abstract statement.

A. Basic facts

A ring is zero-dimensional when we have
Vi€ AJacAIdeN  z%=az™ (1)

If the ring is reduced d = 1 is sufficient because z%(1 — za) = 0 implies (1 — za) = 0.
In a commutative ring C, two elements a and b are quast inverse if one has

a’b = a, b*a = b.

We say also that b is the quasi inverse of a. Indeed it is unique: if a?b = a = a%c, b*a = b and
c*a = ¢, then since ab = a*b?, ac = a*c* and a*(c — b) = a — a = 0, we get

c—b=a(c* —b*) =alc—0b)(c+b) =a*(c—b)(c* +b*)=0.
On the other hand if 2%y = z, one sees that xy? is quasi inverse of z. So:

Fact A.1 A ring is zero-dimensional reduced if and only if each element has a quasi inverse.

Such rings are also called absolutely flat or von Neuman regular (this is mainly used in the
non commutative case, with the equations aba = a and bab = b).

So, zero-dimensional reduced rings can be defined as equational structures, adding a unary
law a +— a® satisfying (2)

a’a® = a, a(a®)? =a®. (2)
This implies, with e, = aa®,
€2 = e, €.0 = a, eq.a® = a®,
(a®)* = a, (ab)® = a®b°, 0* =0,
1*° =1, x regular & xax® =1, x idempotent & = = x°.

As an easy consequence:

Fact A.2 A ring is zero-dimensional reduced if and only if any finitely generated ideal is gen-
erated by an idempotent.

The notion of zero-dimensional reduced ring is the good equational generalisation of the
notion of field. A field is nothing but a zero-dimensional reduced ring which is connected (i.e.,

with 0 and 1 as unique idempotents).

Lemma A.3 Let A C C with C zero-dimensional reduced and a € C. We use the notation
e, = aa’.
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1. e, is the unique idempotent of C such that {(a) = (e,). Moreover Anng(a) = Anng(e,) =
(1 —e,)

2. C=¢,CP (1 —e,)C with ¢,C ~ C[l/e,]| ~ C/{1 —e,) and (1 —e,)C =~ C/{e,)
(NB: the ideal e,C is not a subring, but it is a ring with e, as 1).

3. In e,C, a is invertible and in C/{e,), a is null.

4. Ifa € A, then e,Ala®] ~ A[l/al.

5. More generally, with a,b,c € A one has (eqsepe.)Ala®,b®, c*] ~ A[l/(abc)].
6. If moreover abc = 0, then (eqep)Ala®, b, c®] ~ A[l/(ab)].

Proof. The 3 first items are easy and well known. Let us see 5. In the ring B =
(eqepec)Ala®, b®, c®], abe is invertible, with inverse a®b®c®. Thus the homomorphism

b AL Alat bt ¢t TTEST B
factorises with a unique € in the following way
A = A1/ (abe)] - B.

Since A C C, j is injective and we can identify x € A and j(z). The homomorphism 6 is
surjective because (1/abc) = a®b*c® = v and in B, a® = bcu, b* = acu, ¢® = abu. On the other
hand Kerm = Annp (abe) C Ker ¢ and if x € Ker ), then eyepe.x = egpexr = 0, thus abex = 0.

Let us see 6. Since abc = 0, 0 = ege = eq6pe. and in (eqep)Ala®, b, ¢*] = By one has ¢* =
eqepc® = eqep(ecc®) = 0 thus By = (e,e)Afa®, b°] and we conclude with 5. g

The two last items generalise with an arbitrary finite number of elements of A.

A possible interpretation of Lemma A.3 is that it works as a formalisation of what happens
when we do dynamic computations in a reduced ring “as if” it were a subring of a field. Item 3
says that this dynamical computation is possible (at least if we can find C). Last items show
that this dynamical computation can mimic efficiently the localisation at a minimal prime.

B. Reduced rings as subrings of a zero-dimensional reduced ring

Since the notion of zero-dimensional reduced ring is purely equational, universal algebra says
that any commutative ring generates a zero-dimensional reduced ring (this gives the adjoint
functor to the forgetful functor). We have to see that if the ring A is reduced, the homomor-
phism from A to the zero-dimensional reduced ring it generates is injective.

Lemma B.1 If A C C with C zero-dimensional reduced, and if x® denotes the quasi inverse
of x, then the ring A[(a®).ea] is zero-dimensional (thus it is the least zero-dimensional subring
of C containing A ).

Variant: if A C B are reduced rings, and if each a € A has a quasi inverse a® in B, then the
ring Al(a®).ea] is zero-dimensionall.

Proof. We have to show that each element of A[(a®).ca] has a quasi inverse. Since (ab)® =
a®*b® each element of A[(a®)sca] can be written > a;b? with a;,b; € A. On the other hand
a;b! = a;bfr; with r; = a;a} idempotent. Moreover if we have idempotents r,..., 7, they
generate a Boolean algebra containing a basic system of orthogonal idempotents ey, ..., e, such
that r; = Zeﬂ“i:ej e; (i € {1,...,k}). Finally if e,...,e, is a basic system of orthogonal
idempotents in C, if ai,...,a,,b1,...,b, € A, if ¢ =Y a;ble; and ¢ = Y| atbe;, then
c?c = cand d?c=¢, thus ¢ = c°. O
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Lemma B.2 Let A be a reduced ring and a € A. Let B = A[T]/{(aT? —T,a?T — a) and
C = B,cq. Let a® be the image of T in C. Then

1. C~ (A/{a))wea x A[l/a] and the natural homomorphism A — C is injective (one iden-
tifies A to a subring of C).

2. a® 1s quasi inverse of a in C.

3. For any homomorphism A —— A’ such that ©(a) has a quasi inverse in B, there exists
a unique homomorphism C % A’ such that the homomorphism A — C LA s equal
to .
The proof is left to the reader. The following corollary is a consequence of the strong unicity
property given in Lemma B.2.

Corollary B.3 Let ay,...,a, € A. Then the ring we obtain by repeating the construction of
Lemma B.2 for each a; does not depend, up to unique isomorphism, of the ordering of a;’s.

Example: let us denote A,y the ring constructed in Lemma B.2; let a,b,c € A; then there
exists a unique A-homomorphism from ((Ag.) 1) (e to ((Age)ge}) ey and it is an isomorphism.
Lemma B.2 and Corollary B.3 give the following theorem.

Theorem B.4 Let A be a reduced ring. We denote by A the ring we obtain as filtered colimit
by iterating the construction of Lemma B.2 (Corollary B.3 says that this works).

Then A is a zero-dimensional reduced ring and the natural homomorphism A — A is injec-
tive. Moreover this ring is the zero-dimensional reduced ring generated by A with the precise
following meaning: for any zero-dimensional reduced ring A’, any homomorphism A A
factorises in a unique way via the natural homomorphism A — A.

In a shorter form:

Theorem B.5 Any reduced ring A is contained in a zero-dimensional reduced ring C =
A[(a®)aen]-

C. Zero dimensional reduced rings and fields

We said that the notion of zero-dimensional reduced ring is the good equational generalisation
of the notion of field. In particular any equational consequence of field theory is an equational
consequence of the theory of zero-dimensional reduced rings.

In an informal way we can give the following local-global elementary principle.

Local-global elementary machinery: from discrete fields to zero-dimensional re-
duced rings. Most algorithms that work with discrete fields can be modified in order to work
with zero-dimensional reduced rings, decomposing the ring in the product of two components
each time the algorithm (written for discrete fields) uses the test “Is this element zero or in-
vertible?”. In the first component the element is zero, in the second one it is invertible.

We have written “most” rather than “all” because the result of the algorithm given for
discrete fields has to be written in a form where there is no reference to the connectedness of
a discrete field.

Applying the previous local-global machinery allows to get Theorem C.1 from Lemma 3.1,
as soon as we have seen that this lemma gives an algorithm for discrete fields.

Theorem C.1 Let C be a zero-dimensional reduced ring. Then any projective module of con-
stant rank 1 over C[X] is free.

For the sceptical reader, we give some details in Annex E.

13



D. Traverso-Swan’s theorem: general case

New constructive proof of Lemma 3.7

Theorems B.5 and C.1 imply there exists a zero-dimensional reduced ring C = A[(a®)sca] 2 A
with Im P free over C[X]. This property remains true for a ring B C C generated by a finite
number of quasi inverses aj, ..., a? of elements of A. We write e¢; = a;a? (e; is an idempotent
such that e;a; = a; and e;al = a?) and €, = 1 —e;. We give the argument for r = 3 but it is clear
that the argument is general. We decompose the ring B in a product of 2" rings. Equivalently
we write the ring as a direct sum of 2" ideals.

B = e1e263B @ e16265B @ e1ehe3B @ el eqesB @ erehes B @ e eaes B @ €] ehesB @ el ehes B, (3)
Lemma A.3 item 5 shows that
ereae3B ~ ejegesAfal, a3, a3)] ~ All/(a1az2a3))

Since the module Im P is free over B[X], it is free over each of the 2" components. In particular
it is free over ejeqesB[X] ~ Al[l/(ajaz2a3)][X]. From the hypothesis in Lemma 3.7 we get
ajasaz = 0, thus ejeges = 0, ejeaey = eqea, ete. .., and the decomposition (3) becomes

B =¢1e:B @ e1e3B B ege3B @ e1e565B @ e eqes B @ e enesB @ e ehes B.

Lemma A.3 item 6 shows that e;eaB ~ A[l/(ajaz)]. Since P is free over this component we
get ajas = 0, thus ejes = 0, e1e, = e1, €jea = ey. Similarly aja3 = 0 = ejes, asaz = 0 = eqe;
and finally ejelel = e, €)eses = eq, €\ ehes = e3. We get a new decomposition

B =¢B®e;BdesB @ elele;B.
At the end each a; is null and B=A = A[1/1]. So1=101in A. O

Theorem D.1 (Traverso-Swan-Coquand)

If A is a seminormal ring, then Pic A = Pic A[X].

More precisely if a matriz P(X) € A[X]"" = (m;;j(X))ijeq1,..ny 15 idempotent of rank 1
and if P(0) = 1,1, then we can construct polynomials fi,..., fn, g1y, 90 € A[X] such that
m; ;= fig; for alli,j.

Proof. This proof is only a slight variation of the one given for the integral case.

We use the characterisation given in Lemma 2.6. Let P(X) = (m; ;(X)); j=1,.» be an idem-
potent matrix of rank 1 with P(0) = I,,;. Let K be a zero-dimensional reduced ring contain-
ing A. On K[X] the module Im P(X) is free. Thus there exist f = (fi(X),..., fu(X))
and ¢ = (¢1(X),...,9.(X)) in K[X]" such that m,;; = fig; for all i,j. Moreover since
f1(0)g1(0) = 1 and since we can modify f and ¢ multiplying them by units, we can assume that
f1(0) = ¢1(0) = 1. Since f1g; = my; and using Kronecker theorem, the coefficients des g; are
integral over the ring generated by the coefficients of m, ;’s. In the same way the coefficients
of f;’s are integral over the ring generated by the coefficients of m; ;’s.

Let B be the subring of K generated by A and by the coefficients of f;’s and g;’s. Thus B is a
finite extension of A (i.e., B is a finitely generated A-module). We have to show A = B. Let
us call a the conductor of A in B. Our aim is now to show a = (1), i.e., A/a is trivial.
Following Lemma 3.4 a is a radical ideal of B. Lemma 3.6 applies with A C B. We have
A/a =C CB/a = C', which is reduced, and f;g; = m;; in B/a. To show that C is trivial, it
is sufficient to show that C satisfies, with the matrix P mod a, the hypotheses of Lemma 3.7.
So let us consider an a € A such that Im P is free over C[1/a][X] and let C[l/a] = L C
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C'[1/a] = L. If z is an object defined over A let us call T what it becomes after the change of
ring A — L’. The module M is free over L[X]. This implies, by unicity (Lemma 2.5) and since
f1(0) = ¢1(0) = 1, that the polynomials f; and g; are in L[X] (if u(X) € L[X] is invertible and
u(0) =1, then u = 1).

This means that there exists N € N such that the polynomials a f; and a"g; have their
coefficients in A. Thus Lemma 3.6 implies that a € a, i.e., a =0 in C. a

If we use Lemma 3.5 instead of Lemma 3.4 we get the following more precise result.

Theorem D.2 If A is a ring contained in a zero-dimensional reduced ring B and M a projec-
tive module of rank 1 over A[X], there exist cq,. .., ¢y, in B such that:

1. ¢ and ¢} are in Al(cj)j<) fori=1,...,m,

2. M is free over A[(c;);<m][X].

E. Gced rings

In this section we give a detailed proof of Theorem C.1, without using the local-global elemen-
tary machinery page 13.

Definition E.1 A ring A is called a pp-ring if the annihilator of each element is (a principal
ideal generated by an) idempotent. For a € A, we denote e, the idempotent such that Ann(a) =
(1 —eq). So a is reqular in A[l/e,] and null in A[1/(1 — e,)].

An integral ring is exactly a connected pp-ring.

Lemma E.2 Let xq,...,x, be elements of a commutative ring. If one has Ann(z;) = (r;)
where r;’s are idempotent (1 < i < mn), let s; = 1 — 1y, t1 = 81, ta = 1182, t3 = r17283,.. .,
tps1 =11r9 Ty Thenty, ... t,11 1S a basic system of orthogonal idempotents and the element
T =21+ toxo + - - - + tyxy, satisfies Ann(xy, ..., x,) = Ann(z) = (tpy1).

Corollary E.3 Let A be a pp-ring and P = (myj)1<ij<n @ Square matriz such that Tr(P) is
reqular. Then there exists a matriz J € A™" such that J*> = 1, and JPJ = JPJ' has a
reqular coefficient in position (1,1).

Proof. We apply Lemma E.2 with the elements z; = m,;. We have t,;; = 0 because
tn1Tr(P) = 0. Thus (t1,...,t,) is a basic system of orthogonal idempotents. Let Jj
be the permutation matrix exchanging vectors 1 and k in the canonical basis. Let J =
t11, + tado + -+ + t,J,. We have J? = I, and the coefficient in position (1,1) of JPJ is
equal to x = tyxy + toxs + - - - + tpx, = 21 + toxs + - - - 4+ 2y, thus it is regular. O

A zero-dimensional reduced ring is a pp-ring and if A is a pp-ring, then the total fraction
ring of A, denoted by Frac(A), is a zero-dimensional reduced ring: for all a, a = (1 —e,) + a
is regular and a/a = a°® is a quasi inverse of a in Frac(A). Moreover, for all a € A, A[l/a] is a
pp-ring and Frac(A[1/a]) can be indentified with e,Frac(A) ~ Frac(A)[1/a].

Finally, if A is a pp-ring then A[X] is a pp-ring and the annihilator of a polynomial f is
generated by the idempotent equal to the product of annihilators of the coefficients.

In a pp-ring if a divides b and b divides a, one has e, = e, and ua = b with an invertible
element u. This allows to develop a theory of ged pp-rings analogous to the theory of ged
domains.
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Definition E.4 A commutative reqular monoid is called a ged monoid if any two elements do
have a greatest common divisor. If g is a ged for a and b we write g = ged(a, b) (in fact a ged
is defined up to a unit).

Lemma E.5 Let A be a pp-ring. The following are equivalent:
1. The monoid of reqular elements is a gecd monoid.
2. For any idempotent e reqular elements of A[l/e] give a ged monoid.
3. Two arbitrary elements have a gcd.

In this case we say that A is a ged pp-ring.

Proof. For example, to show that 1. implies 2., one introduces, for a € eA with a regular in
All/e], the element a = (1 — ¢e,) + a which is regular in A. If ¢ is the ged of @ and ¢ in A, the
same element g, viewed in A[1/e], is the ged of a and c. O

A ged pp-ring which is connected is a usual ged ring. A zero-dimensional reduced ring is a
gcd pp-ring.

Let A be a ged pp-ring and a polynomial f(X) = >} fxX*, we denote by G(f) the ged
(defined up to a unit) of the coefficients of f. If G(f) = 1 one says that f is primitive'.

We have to see that arguments in the proof of Lemma 3.1 work also for ged pp-rings. In
particular, if A is a ged pp-ring, so is A[X]. So for any zero-dimensional reduced ring A, the
ring A[X] is a ged pp-ring and thus any projective module of constant rank 1 over A[X] is free.

Let us see the first argument in the proof: Let P = (m; ;) be an idempotent matriz of rank
1. Since Y, m;; = 1 we can assume that mq; is reqular. Corollary E.3 gives the answer.

For the end of the proof we look at the “bible” [14], where all proofs are algorithmic (and
often very simple).

Lemma E.6 (cf. Theorem 1.1 page 108 in [14])
Let a,b, c be elements of a gcd pp-ring. Then

1. ged(ged(a, b), ¢) = ged(a, ged(b, ¢)).
2. c¢-ged(a,b) = ged(ca, cb).
3. If x = ged(a, b), then ged(a, be) = ged(a, zc).

4. If albc and ged(a,b) = ey, then aleyc.

Proof. 1f one of the 3 elements a, b, ¢ is null, all is clear. In the general case let r; be an element
of the basic system of orthogonal idempotents generated by e,, ¢, and e.. Each element a,b, ¢
is null or regular in A[1/r;]. The proof given in [14] for ged monoids works for the component
in which a, b, ¢ are regular. O

A consequence of item 2 in Lemma E.6 is that in a ged pp-ring, a primitive polynomial is
a regular element of A[X].

! Warning. This conflicts another traditional terminology: f is primitive when the ideal of coefficients of f
contains 1.
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Lemma E.7 (Lemma 4.2 page 123 in [14]) Let A be a gcd pp-ring, K = Frac(A) and f € K[X].
We can find a primitive polynomial g € A[X] and ¢ € K such that f = cg. If we have another
decomposition [ = ¢’ then there exists u € A* such that ¢ = uc'.

Proof. If f = 0 we take ¢ = 1 and ¢ = 0. If G(f) is regular, the proof in [14] works,
replacing “# 0”7 by “regular”. Thus we decompose the ring in two components by using the
idempotent eqy). O

Lemma E.8 (Gauss Lemma, Lemma 4.3 page 123 in [14])
Let A be a ged pp-ring and f,g € A[X]. Then G(f)G(g) = G(fg).

Proof. Let (r;) be the basic system of orthogonal idempotents generated by e.’s for all coeffi-
cients ¢ of f and g. In each ring A[1/r;] polynomials f and g have a well defined degree®. Let
us see that the elegant proof by induction on n 4+ m = deg(f) + deg(g) given in [14] works.

We reason by induction on m + n. By distributivity (item 2 in Lemma E.6) and using Lemma
E.7, we are reduced to the case where G(f) = G(g) = 1. Let ¢ = G(fg) and d = ged(f,, ¢).
Then d divides (f — f,X")g. If f = f,X™ the result is clear. In the other case, by induction
hypothesis d divides G(f — f,X")G(g9) = G(f — f,X"), thus d divides f and d = 1. So
ged(frn, ¢) = 1. Similarly ged (g, c) = 1 and since ¢ divides f, g, ¢ = 1. O

Finally proofs in [14] for the two following results do work in our new context.

Corollary E.9 (Corollary 4.4 page 123 in [14])
Let A be a gcd pp-ring, f,g € A[X] and K = Frac(A). Then f divides g in A[X] if and only
if f divides g in K[X] and G(f) divides G(g).

Theorem E.10 (Theorem 4.6 page 124 in [14])
If A is a gcd pp-ring, then so is A[X].

In fact all these verifications are quasi automatic. Proofs in [14], which are also algorithms,
are based on the disjunction “z = 0 or = regular” in a gcd integral ring. In the case of ged
pp-rings, it is sufficient to realise the disjunction by decomposing the ring in two components
by using the idempotent e,.
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