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Abstract
We give smooth parametrizations (Cr , C∞ or Nash) for several cases of the Positivstellensatz. This improves previous

results where the parametrizations were obtained by means of semipolynomials (sup–inf combination of polynomial
functions). A general homogeneous Positivstellensatz is obtained and used to get several homogeneous versions of

the parametrization theorems.

Introduction.
This paper is a variation on the subject considered in [DGL] with several improvements. These improvements
are shown with three examples. Let K be an ordered field and R its real closure.

Our first example is obtained by considering Hilbert’s 17th Problem. Let x denote the n variables
(x1, . . . , xn). If f(x) = f(x1, . . . , xn) is a polynomial in K[x] = K[x1, . . . , xn] everywhere nonnegative in
Rn then it can be considered as the specialization of the general polynomial fn,d(c,x) of degree d in x with
coefficients c = (c1, . . . , cm) where m =

(
n+d

n

)
. This specialization will be obtained by replacing c by a point

of the closed 0Q-semialgebraic set defined by:

IFn,d(R) = {γ ∈ Rm : ∀ξ ∈ Rn fn,d(γ, ξ) ≥ 0}.

A K-semipolynomial (defined, e.g., in [DGL] or [GL1]), also called a sup–inf–polynomially K–definable
(SIPD) function, is a suprema of infima of finitely many polynomials in K[y1, . . . , yt].

Theorem A (Rational Cr parametrization of Hilbert’s 17th Problem)
There exists a linear form hn,d(c) with integer coefficients such that:

γ ∈ IFn,d(R) \ (0, . . . , 0) =⇒ hn,d(γ) > 0.

For every positive integer r, the polynomial hn,d(c)fn,d(c,x) can be written as a sum of rational functions

hn,d(c)fn,d(c,x) =
∑

j

pj(c)
(

qj(c,x)
k(c,x)

)2

(◦)

where

• k(c,x) and the qj(c,x) are polynomials in the variables x whose coefficients are homogeneous 0Q-
semipolynomials of class Cr,

• the pj(c) are homogeneous 0Q-semipolynomials of class Cr.

• If γ ∈ IFn,d(R) then k(γ,x) vanishes only on the zeros of fn,d(γ,x) and the nonnegativity of pj(γ) is
“clearly” evident from its construction.

• Every summand in the right hand side of (◦) is c–homogeneous with c–degree equal to 2.

Remark that, as in [DGL], every summand in (◦) is a well defined continuous rational function when
γ ∈ IFn,d(R) but otherwise it is only possible to guarantee the equality in (◦) when mutlipied by k(c,x)2.
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Next we consider a variation of Hilbert’s 17th Problem concerning homogeneous polynomials everywhere
positive. If g(x) is a homogeneous polynomial with even degree then it can be regarded as the specialization
of the general x-homogeneous polynomial gn,d(c,x) of degree d in x with coefficients c = (c1, . . . , cm′) where
m′ =

(
n+d−1

n−1

)
. Consider the 0Q-semialgebraic set IUn,d defined by:

IUn,d(R) = {γ ∈ Rm′
: ∀ξ ∈ Rn \ {(0, . . . , 0)} gn,d(γ, ξ) > 0}.

Since IUn,d(R) is the set of γ’s such that gn,d(γ, ξ) > 0 for any ξ in the unit sphere, and since this sphere is
compact (in the semialgebraic sense), the set IUn,d(R) is clearly open.

Theorem B (Parametrizations for a variant of the Homogeneous Hilbert’s 17th Problem)
Let c1 be the coefficient of xd

1 in gn,d(c,x) (which is positive if c = γ ∈ IUn,d(R)). The polynomial c1gn,d(c,x)
(d even) can be written as a sum of rational functions

c1gn,d(c,x) = p1(c)
(
‖x‖s

k(c,x)

)2

+
∑
j≥2

pj(c)
(

qj(c,x)
k(c,x)

)2

(◦◦)

with s > 0,

• k(c,x) and the qj(c,x) are homogeneous polynomials in the variables x, the x-degree of every rational
function in the sum being equal to d and

• if γ ∈ IUn,d(R) then p1(γ) is strictly positive, the pj(γ) (j ≥ 2) are nonnegative and k(γ, ξ) is different
from 0 when ξ 6= (0, . . . , 0).

Concerning the coefficients in the right hand side of the previous equality, three different types of parametriza-
tion are obtained:

? For any fixed integer r ≥ 0, the pj(c) and the x-coefficients of k(c,x) and the qj(c,x) are 0Q-semipoly-
nomials homogeneous of class Cr, the c-degrees of the summands in the considered equality are equal to
2 and the positivity of p1(γ) and the nonnegativity of pj(γ) (j ≥ 2), when γ ∈ IUn,d(R), are “clearly”
evident from their construction.

∗ The pj(c) and the x-coefficients of k(c,x) and the qj(c,x) are semialgebraic and continuous throughout

Rm′
, Nash on IUn,d(R) and vanishing outside IUn,d(R).

� When R = IR , the pj(c) and the x-coefficients of k(c,x) and the qj(c,x) are C∞ throughout IRm′
,

analytic on IUn,d(IR) and vanishing outside IUn,d(IR).

The same remark made after Theorem A concerning the continuity of the summands in (◦) applies to
the summands in (◦◦).

Finally we present a parametrized homogeneous real Nullstellensatz which can be considered as a vari-
ation of Theorem B. This is obtained by considering a list of p general homogeneous polynomials with n
variables (everyone with weight equal to 1) and fixed degrees. Let lst = (n, d1, . . . , dp) be a list of positive
integers, mi be equal to

(
n+di−1

n−1

)
and

m′′ = m1 + · · ·+ mp.

We consider gi(ci,x) the general homogeneous polynomial of x-degree di with coefficients ci = (c(i)
1 , . . . , c

(i)
mi).

Finally let c be equal to (c1, . . . , cp). We define Wlst(R) as the set of all the γ = (γ1, . . . , γp) ∈ Rm′′
such

that the system of polynomial equations

g1(γ1,x) = 0, . . . , gp(γp,x) = 0

has no solutions except (0, . . . , 0). Wlst(R) is a 0Q-semialgebraic set which is open by a compactness argument
since

γ ∈Wlst(R) ⇐⇒ ∀ξ ∈ Sn(R)
p∑

i=1

(gi(γ, ξ))2 > 0,
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where Sn(R) is the unit sphere in Rn.

Theorem C (Parametrization of the weak real homogeneous Nullstellensatz)
For every list lst = (n, d1, . . . , dp), we obtain an algebraic identity:

p1(c)‖x‖2s +
∑
j≥2

pj(c)aj(c,x)2 +
p∑

i=1

gi(c,x)bi(c,x)2 = 0

with s > 0,

• the aj(c,x) and bj(c,x) are x-homogeneous polynomials, the x-degree of every term in the previous
equation being equal to 2s, and

• if γ ∈Wlst(R), then p1(γ) > 0 and, for j ≥ 2, pj(γ) ≥ 0.

Concerning the x-coefficients in the left hand side of the previous equation we obtain three types of
parametrization:

? For any fixed integer r ≥ 0, the pj(c) and the x-coefficients of the aj(c,x) and the bi(c,x) are 0Q-
semipolynomials homogeneous of class Cr, the c-degrees of the summands in the considered equation
are equal and the positivity of p1(γ) and the nonnegativity of pj(γ) (j ≥ 2), when γ ∈ Wlst(R), are
“clearly” evident from their construction.

∗ The pj(c) and the x-coefficients of the aj(c,x) and the bi(c,x) are semialgebraic and continuous through-

out Rm′′
, Nash on Wlst(R) and vanishing outside Wlst(R).

� When R = IR , the pj(c) and the x-coefficients of the aj(c,x) and the bi(c,x) are C∞ throughout IRm′′
,

analytic on Wlst(IR) and vanishing outside Wlst(IR).

In order to prove these theorems we state and prove in section II a new and more general version for
the Homogeneous Positivstellensatz. With respect to the other versions (see [Ste2], [Del1] and [Guan]) our
version allows more general weights.

The main tools used in the proof of theorems A, B and C are quite similar to the techniques introduced in
[DGL] to construct a continuous and rational solution of Hilbert’s 17th Problem by means of semipolynomials.

Two problems remain still unsolved: the first one, when R = IR, on the existence (or not) of a C∞
parametrization of Hilbert’s 17th Problem (an arbitrary real analytic parametrization was excluded by C.
Delzell in [Del2]).

The second one on the existence (or not) of a rational, continuous and real parametrization for the weak
homogeneous complex Nullstellensatz. More precisely, we consider a polynomial system of homogeneous
equations with complex coefficients

G : g1(z) = 0, . . . , gp(z) = 0,

without solutions in Cn \ {(0, . . . , 0)}. For every unknown zi, Hilbert’s Nullstellensatz provides an algebraic
identity Ei in C[z] showing that zi is in the radical of the ideal generated by the gj ’s. We fix the degrees of
the polynomials gj ’s and consider their coefficients as parameters

c = (c1, . . . , cm′′) = (a1 +
√
−1 b1, . . . , am′′ +

√
−1 bm′′) = (a,b).

The set of the parameters (a,b) such that the system G is impossible in Cn \ {(0, . . . , 0)} is an open semi-
algebraic set S in IR2m′′

\ {(0, . . . , 0)}. Each algebraic identity Ei could have a fixed type and could be
parametrized by 0Q-semialgebraic continuous functions on S.

I. Parametrizations in the non-homogeneous case.

Let K be an ordered field and R its real closure. We say that K is discrete when, with the point of view
of constructive mathematics, the sign of any element in K can be determined (it is always assumed that
algebraic operations in K are explicit). The reader interested by the theorems in classical mathematics can
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read the proofs in this article considering that every ordered field is discrete by the law of the excluded
middle and giving no meaning to the word “explicit”. More details about this question are provided in the
conclusion.

This section contains four different parts. The first one presents the general form of the polynomial
Positivstellensatz, the main tool used to derive the parametrizations looked for. The second part is de-
voted to obtaining the semipolynomial parametrization of class Cr, the third part to obtaining the Nash
parametrization and, finally, the fourth part to obtaining, when R ⊆ IR, the parametrization of class C∞.

The polynomial Positivstellensatz.
First we recall the definitions of strong incompatibility and the general form for the real Nullstellensatz
in the polynomial case (see [BCR], [Lom1] and [Lom3]) by following the notation of [Lom3]. We consider
an ordered field K, and x denotes a list of variables x1, x2, . . . , xn. We then denote by K[x] the ring
K[x1, x2, . . . , xn]. If F is a finite subset of K[x], we let F2 be the set of squares of elements in F , and
M(F) be the multiplicative monoid generated by F ∪ {1}. Cp(F) will be the positive cone generated by F
(= the additive monoid generated by elements of type pPQ2, where 0 ≤ p ∈ K, P ∈M(F), and Q ∈ K[x]).
Finally, let I(F) be the ideal generated by F .

Definition I.1
Consider 4 finite subsets of K[x] : IH>, IH≥, IH=, IH 6=, containing polynomials for which we want respectively
the sign conditions > 0, ≥ 0, = 0, and 6= 0: we say that IH := [IH>, IH≥, IH=, IH 6=] is strongly incompatible
in K if we have in K[x] an equality of the following type:

S + P + Z = 0 with S ∈M(IH> ∪ IH2
6=), P ∈ Cp(IH≥ ∪ IH>), Z ∈ I(IH=).

If
IH> = {S1, . . . , Sr} IH≥ = {P1, . . . , Pj} IH= = {Z1, . . . , Zk} IH 6= = {N1, . . . , Nh}

then we use the following notation for the strong incompatibility of IH:y[S1 > 0, . . . , Si > 0, P1 ≥ 0, . . . , Pj ≥ 0, Z1 = 0, . . . , Zk = 0, N1 6= 0, . . . , Nh 6= 0]
y

or, yIH(x1, . . . , xn)
y.

It is clear that a strong incompatibility is a very strong form of impossibility. In particular, it implies
that it is impossible to give the indicated signs to the polynomials considered, in any ordered extension of
K.

The list IH := [IH>, IH≥, IH=, IH 6=] appearing in the definition of strong incompatibility is called a
generalized system of sign conditions on polynomials of K[x]. The different variants of the Nullstellensatz
in the real case are a consequence of the following general theorem:

Theorem I.2 (Polynomial Positivstellensatz)
Let K be an ordered discrete field and R a real closed extension of K. The three following conditions,
concerning a generalized system of sign conditions on polynomials of K[x], are equivalent:
• strong incompatibility in K;
• impossibility in R; and
• impossibility in all ordered extensions of K.

This Nullstellensatz was first proved in 1974 [Ste1]. Less general variants were given by Krivine [Kri],
Dubois [Du], Prestel [Pre], Risler [Ris] and Efroymson [Efr]. All the proofs until [Lom1] used the Axiom of
Choice.

Semipolynomial parametrization of class Cr.
We begin introducing a definition and several easy lemmas concerning some semipolynomials of class Cr.

Definition I.3
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Let r be a positive integer. A K-semipolynomial f is a K-Cr-semipolynomial if f can be obtained as a
composition (in an iterative way) of polynomial functions with coefficients in K and the functions:

α 7−→ (max{α, 0})s

with s > r.

Remark that in the previous definition it would suffice to consider only the function:

α 7−→ (max{α, 0})r+1

because the others are obtained multiplying by a convenient power of α. It is natural in this setting to ask
the question (à la Pierce-Birkhoff) whether every K-semipolynomial of class Cr is a K-Cr-semipolynomial,
but the answer to this question is not necesary for our purposes.

Lemma I.4
If f is a K-Cr-semipolynomial then every K-semipolynomial appearing inside the definition of f (in particular
f itself) is a K-semipolynomial of class Cr.

Lemma I.5
Let s be an odd integer with s > r. The function:

α 7−→ |α|s

is a 0Q-Cr-semipolynomial. The graph of this function is:

{(α, β) ∈ R2 : β2 = α2s, β ≥ 0}.

Lemma I.6
Let s be an odd integer with s > r. The functions mas and mis defined by:

mas(α, β) def= αs + βs + |α− β|s,

mis(α, β) def= αs + βs − |α− β|s

are 0Q-Cr-semipolynomials. Moreover, the following equivalences hold:

mas(α, β) > 0 ⇐⇒ α > 0 or β > 0,

mas(α, β) ≥ 0 ⇐⇒ α ≥ 0 or β ≥ 0,

mis(α, β) > 0 ⇐⇒ α > 0 and β > 0,

mis(α, β) ≥ 0 ⇐⇒ α ≥ 0 and β ≥ 0.

Lemma I.7
If k and r are positive integers then it is possible to construct two 0Q-Cr-semipolynomials, maxr and minr,
defined on Rk and verifying the following equivalences:

maxr(α1, . . . , αk) > 0 ⇐⇒ α1 > 0 or . . . or αk > 0,

maxr(α1, . . . , αk) ≥ 0 ⇐⇒ α1 ≥ 0 or . . . or αk ≥ 0,

minr(α1, . . . , αk) > 0 ⇐⇒ α1 > 0 and . . . and αk > 0,

minr(α1, . . . , αk) ≥ 0 ⇐⇒ α1 ≥ 0 and . . . and αk ≥ 0.

Proof:
If k = 2 then maxr(α1, α2) is defined as mas(α1, α2) with s the first odd integer bigger than r. For k > 2,
the definition of maxr is done inductively.
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Proposition I.8
Let r be a positive integer. Then:
• for every closed K-semialgebraic set F in Rn, it is possible to construct in an explicit way a K-Cr-

semipolynomial h verifying:
ξ ∈ F ⇐⇒ h(ξ) ≥ 0;

• for every open K-semialgebraic set U in Rn, it is possible to construct in an explicit way a K-Cr-
semipolynomial g verifying:

ξ ∈ U ⇐⇒ g(ξ) > 0.

Proof:
The Finiteness Theorem (see [BCR]) allows us to describe the closed semialgebraic set F as:

F =
m⋃

i=1

{ξ ∈ Rn : fi,1(ξ) ≥ 0, . . . , fi,si
(ξ) ≥ 0},

with every fi,j a polynomial with coefficients in K. Defining

h(ξ) = maxr(minr(f1,1(ξ), . . . , f1,s1(ξ)), . . . , minr(fm,1(ξ), . . . , fm,sm
(ξ))),

lemma I.7 allows us to obtain the desired conclusion.
The same proof, replacing ≥ by >, applies for the open case.

Next, putting together the previous propositions and the techniques introduced in [DGL], we prove the
theorem analogous to theorem III.1 in [DGL], where a rational and continuous solution for some cases of the
Positivstellensatz was introduced.

Theorem I.9 (Rational, Cr parametrization for some cases of the Positivstellensatz)
Let r be a positive integer. Let IH(c,x) be a generalized system of sign conditions on polynomials in K[c,x],
where the xi’s are considered as variables and the cj ’s as parameters. If SIH (R) is the semialgebraic set
defined by

γ ∈ SIH (R) ⇐⇒ ∀ξ ∈ Rn IH(γ, ξ) is false,

and if SIH (R) is locally closed, then there exist K-Cr-semipolynomials h1(c) and h2(c) such that

γ ∈ SIH (R) ⇐⇒
[
h1(γ) ≥ 0, h2(γ) > 0

]
.

If γ ∈ SIH (R), then the impossibility of IH(x) := IH(γ,x) inside Rn is made obvious by a strong incom-
patibility of fixed type (i. e. independent of γ) and with coefficients given by K-Cr-semipolynomials in c.
Moreover,

• the algebraic identity obtained, seen as a polynomial in x, has an especially simple structure. More
precisely, every x-coefficient of this identity is a K-Cr-semipolynomial in c vanishing everywhere (without
assuming h1(γ) ≥ 0 and h2(γ) > 0), and

• every coefficient p(c) in the algebraic identity which must be nonnegative (resp. positive) on SIH (R) is
given by a K-Cr-semipolynomial showing such character in an especially clear way under the hypothesis
h1(c) ≥ 0 and h2(c) > 0.

Proof:
The existence of h1 and h2 is due to proposition I.8. The rest of the proof is identical to the proof of theorem
III.1 in [DGL] with the addition of lemma I.4 assuring that every semipolynomial appearing in the proof is
of class Cr.

The proof begins by introducing the variables that appear in the straight-line programs defining the
semipolynomials h1 and h2. Next we construct a generalized system of sign conditions considering the
equations and inequalities associated to the new variables together with h1(c) ≥ 0 and h2(c) > 0. The proof
of the theorem is achieved applying the polynomial Positivstellensatz to this system and replacing, in the
final identity obtained, every variable of the straight-line programs by the corresponding function.
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A corollary of the previous theorem is Theorem A, stated in the introduction, without the statements
about the c-homogeneity of the parametrized solution (to be shown in section II). For that it is enough to
consider

IH(c,x) = [fn,d(c,x) < 0],

which gives SIH (R) = IFn,d(R).

Nash parametrization.
In this part (and in the next one) we shall deal only with the cases where the coefficients of the generalized
system of sign conditions vary in an open set of the parameter space. Two interesting examples of this
situation were introduced in [GL1].

We begin by recalling a classical definition of a ring of functions everywhere defined and Nash on an
open semialgebraic set (cf. [BCR], pages 42-43).

Definition I.10
Let U be an open semialgebraic set in Rm. The set A(Rm,K, U) will represent the smallest subring of the
ring of continuous semialgebraic functions from Rm to R containing the K-polynomial functions and such
that, if f is a sum of squares of functions in the subring, strictly positive on U , then

√
f is in the subring.

Any function f ∈ A(Rm,K, U) can be defined by a straight-line program with the following structure.
Every instruction is an assignment ti ←− · · · with the indexes i ordered in an increasing way (the last ti is
f). The instructions can have only the two following types:

? tj ←− P (x1, . . . , xn, ti1 , . . . , tik
) where P ∈ K[x1, . . . , xn, ti1 , . . . , tik

] and every ih is smaller than j,

? tj ←−
√

t2i1 + · · ·+ t2ik
where every ih is smaller than j and t2i1 + · · ·+ t2ik

is a strictly positive function
on U .

Concerning the last instruction, the value of tj can be characterized by the following generalized system of
sign conditions:

t2j − (t2i1 + · · ·+ t2ik
) = 0, tj ≥ 0.

It is worthwhile to remark in this point that, in the case where K is discrete and the open semialgebraic
set U is given in an explicit way, there exists an explicit test to decide if a straight-line program such as the
one shown before is correct, i.e., if every instruction of the second type is right.

The next theorem provides a way of defining an open semialgebraic set by means of a Nash function.

Theorem I.11
If U is an open K-semialgebraic set in Rm then there exists a function f ∈ A(Rm,K, U) strictly positive on
U and vanishing outside U .

The proof of this theorem given in [BCR] is fully constructive in the case where K is an ordered discrete
field and the open semialgebraic set U is given in an explicit way. Moreover, the theorem in [BCR] is stated
for the case in which K = R (i.e., with A(Rm,R, U)), but in fact, the proof shows the rational version of
the theorem (as in [BCR]’s proofs of some of the previously mentioned theorems, including, for example, the
Finiteness Theorem).

Theorem I.12 (Nash parametrization for some cases of the Positivstellensatz)
Let IH(c,x) be a generalized system of sign conditions on polynomials in K[c,x], where the xi’s are considered
as variables and the cj ’s as parameters. Let SIH (R) be the semialgebraic set defined by

γ ∈ SIH (R) ⇐⇒ ∀ξ ∈ Rn IH(γ, ξ) is false,

and let us assume that SIH (R) is open. If γ ∈ SIH (R) then the impossibility of IH(x) := IH(γ,x) inside Rn is
made obvious by a strong incompatibility of fixed type (independent of γ) and with “coefficients” given by
functions in c belonging to A(Rm,K,SIH (R)) and vanishing outside SIH (R). In particular, they are Nash
functions on the open set SIH (R), and if K is a real 2-closed field (i.e., if every positive element in K has a
square root in K) then they take values in K, for the points in SIH (R) with coordinates in K.
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Proof:
Using the proof of theorem III.1 in [DGL] together theorem I.11 we obtain an algebraic identity with the
following type:

p1(c)sS(c,x) +
∑

j

aj(c)Qj(c,x)vj(c,x)2 +
∑

j

Nj(c,x)wj(c,x) = 0.

Let IH be equal to [IH>, IH≥, IH=, IH 6=]. The polynomial S(c,x) is a product of polynomials in IH> ∪ IH2
6=,

the Qj(c,x) are products of polynomials in IH>∪ IH≥ and the Nj(c,x) are polynomials in IH=. The function
p1 ∈ A(Rm,K,SIH (R)) is strictly positive on SIH (R) and vanishes outside SIH (R). The aj(c), nonnegative
on SIH (R), the x-coefficients of the vj(c,x) and the wj(c,x) are also in the ring A(Rm,K,SIH (R)).

To obtain all the requirements in the theorem it suffices to show that all the functions in c introduced
vanish outside SIH (R). To achieve this goal we use the function p1(c) as multiplier: multiplying, in the
previous equation, the first term by p1(c)3, every aj(c) by p1(c), every coefficient of each vj(c) by p1(c) and
every coefficient of each wj(c) by p1(c)3, we obtain the equality looked for.

Parametrization of class C∞.
The next theorem is more surprising than the theorems in the previous parametrizations, due to its non
semialgebraic character. As the field of real numbers (which has no an explicit sign test) appears here in an
unavoidable way, a discussion about the constructive nature of the theorem is needed and will be given in
section IV.

Theorem I.13 (C∞ parametrization for some cases of the Positivstellensatz for IR)
Let K be a discrete subfield of IR and R the real closure of K. Let IH(c,x) be a generalized system of sign
conditions on polynomials in K[c,x], where the xi’s are considered as variables and the cj ’s as parameters.
Let SIH (R) be the semialgebraic set defined by

γ ∈ SIH (R) ⇐⇒ ∀ξ ∈ Rn IH(γ, ξ) is false,

and let us assume that SIH (R) is open. If γ ∈ SIH (R) then the impossibility of IH(x) := IH(γ,x) inside Rn

is made obvious by a strong incompatibility of fixed type (independent of γ) and with “coefficients” given
by functions in c of class C∞, analytic on SIH (IR) and vanishing outside SIH (IR).

Proof:
The proof is obtained using the same arguments as in the proof of theorem I.12, with the only difference in
the choice of the multiplier. Defining:

η(t) =

{ 0 if t ≤ 0

e−1/t if t > 0

the multiplier providing the proof of the theorem is

µ(c) = η(p1(c)),

where p1(c) is the multiplier used in the proof of theorem I.12. The proof of the fact that µ(c) is a function of
class C∞, and the same for µ(c) ·q(c) when q(c) is a Nash function on SIH (IR) (semialgebraic and continuous
on Rn), is easy and left to the reader.

II. Homogeneous versions of the Positivstellensatz and other theorems in Real
Algebraic Geometry.

Let K be an ordered field and R its real closure. This section begins introducing the homogeneous setting
we shall consider. Let ` be a fixed integer and x a set of variables (some of them will be considered as
parameters sometimes). To every variable in x is assigned a weight: a list of ` nonnegative rational numbers
(usually these rational numbers are integers and ` = 1 or ` = 2). The weight of a monomial is defined, as
usual, to be the sum of the weights of the variables occuring in it (counted with multiplicity).
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The set of degrees, or weights, of the monomials is the subset W of 0Q`
+ generated (by addition) by the

weights of the variables. This set is provided with a total order relation � satisfying the following properties:
-. � is compatible with the addition,
-. α1 ≤ β1, . . . , α` ≤ β` ⇒ (α1, . . . , α`) � (β1, . . . , β`),
-. W and any finitely generated additive monoid in 0Q`

+ is well–ordered by �.
In this setting, a polynomial is homogeneous if all its monomials have the same weight.

A Homogeneous Positivstellensatz.
First, the definition of strong incompatibility is extended to the homogeneous case.

Definition II.1
Let K be an ordered field. Consider a strong incompatibility for a generalized system of sign conditions IH
over homogeneous polynomials:y[S1 > 0, . . . , Sr > 0, P1 ≥ 0, . . . , Pj ≥ 0, Z1 = 0, . . . , Zk = 0, N1 6= 0, . . . , Nh 6= 0]

y
IH> = {S1, . . . , Sr} IH≥ = {P1, . . . , Pj} IH= = {Z1, . . . , Zk} IH 6= = {N1, . . . , Nh}

with the structure
S +

∑
i

δiAiB
2
i + Z1C1 + · · ·+ ZkCk = 0 (?)

where S ∈M(IH>∪IH2
6=), the δi are positive elements in K, every Ai belongs toM(IH≥∪IH>) and the Bi and

Cj are polynomials in K[x]. The strong incompatibility IH is called homogeneous if all the polynomials in
(?) are homogeneous and if all the summands in (?) have the same degree. It will be denoted in the following
way: y[S1 > 0, . . . , Sr > 0, P1 ≥ 0, . . . , Pj ≥ 0, Z1 = 0, . . . , Zk = 0, N1 6= 0, . . . , Nh 6= 0]

y
homogeneous

.

Using the ideas in the proof introduced by G. Stengle in [Ste2], we obtain a general homogeneous
Positivstellensatz as an algorithmic consequence of the polynomial Positivstellensatz.

Theorem II.2 (Homogeneous Positivstellensatz)
Let K be an ordered discrete field and R a real closed extension of K. The three following conditions,
concerning a generalized system of sign conditions on homogeneous polynomials of K[x], are equivalent:
• the existence of a homogeneous strong incompatibility in K;
• impossibility in R; and
• impossibility in all ordered extensions of K.

Proof:
First we consider the case of the Nullstellensatz: several equalities and one inequality of type 6=. The proof
of the theorem will be obtained by means of a trick “à la Rabinowitsch” over the Nullstellensatz case.

In the Nullstellensatz case we deal with the generalized system of sign conditions:

IH: Z1 = 0, . . . , Zk = 0, N 6= 0.

Applying the polynomial Positivstellensatz we obtain an algebraic identity with the following structure:

N2s +
t∑

i=1

δiB
2
i + Z1C1 + · · ·+ ZkCk = 0 (1)

with s ∈ IN, 0 < δi ∈ K and Bi, Ci ∈ K[x].
Let 2p be the weight of N2s. If every polynomial B2

i and ZjCj has no monomials with weight smaller
than 2p, then the desired homogeneous strong incompatibility is obtained by replacing every Bi and every
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Cj by their homogeneous parts B′
i and C ′

j of suitable weights so that the resulting summands δiB
′2
i and

ZjC
′
j have weights 2p.
The remaining case is solved by deleting the homogeneous parts with weight smaller than 2p in the

following way. Defining B0 = Ns and δ0 = 1, equation (1) becomes:

t∑
i=0

δiB
2
i + Z1C1 + · · ·+ ZkCk = 0 (2)

with B0 homogeneous.
If q is a weight, then Bi,q will denote the homogeneous part of Bi with weight q and Cu,q the homogeneous

part of Cu such that ZuCu,q is the homogeneous part of ZuCu with weight 2q. Using these definitions, the
identity (2) provides, for every weight q, a homogeneous identity with the following structure:

t∑
i=0

δiB
2
i,q + 2

t∑
i=0

δi

∑
u+v=2q

u<q

Bi,uBi,v + Z1C1,q + · · ·+ ZkCk,q = 0 (3, q)

Next, by induction on those q ocurring as weights in the Bi’s, it is proved that every Bi,q satisfies a homo-
geneous strong incompatibility: y[Z1 = 0, . . . , Zk = 0, Bi,q 6= 0]

y
homogeneous

(4, i, q)

A polynomial D is said to satisfy a homogeneous strong incompatibility of type (4) wheny[Z1 = 0, . . . , Zk = 0, D 6= 0]
y

homogeneous
.

Then the homogeneous strong incompatibilities (4, i, q) are obtained from the equations in (3, q) and the
following easy–to–derive stability properties (see [Ste2] or [Del1] for details):
• if A and B are homogeneous polynomials with the same degree satisfying homogeneous strong incom-

patibilities of type (4) then A + B also has this property,
• if A and B are homogeneous polynomials and A satisfies a homogeneous strong incompatibility of type

(4) then AB also has this property,
• if B is a homogeneous polynomials satisfying a homogeneous strong incompatibility of type (4), and A

is a homogeneous polynomial satisfying a homogeneous identity of type

A2 + B +
t∑

i=0

δiV
2
i + Z1D1 + · · ·+ ZkDk = 0,

then A satisfies a homogeneous strong incompatibility of type (4).
To prove the general case it can be assumed without loss of generality that the generalized system of

sign conditions on homogeneous polynomials with which we are dealing is:

IH: P1 ≥ 0, . . . , Pr ≥ 0, Z1 = 0, . . . , Zk = 0, N 6= 0.

The proof will be obtained proving by induction on r that if the considered system is impossible in R then
there exists a homogeneous strong incompatibility in K:y[P1 ≥ 0, . . . , Pr ≥ 0, Z1 = 0, . . . , Zk = 0, N 6= 0]

y
homogeneous

.

The technique “à la Rabinowitsch”, next explained, corresponds, following the terminology in [Lom1] or
[Lom3], to the potential existence of the square root of a positive element, which is established here in the
homogeneous setting.
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The case r = 0 has already been proved: it is the Nullstellensatz case previously considered. The
inductive step is performed by introducing a new variable y with weight equal to ‘(deg Pr)/2’, and considering
the impossible (over R) generalized system of sign conditions on homogeneous polynomials:

IK: P1 ≥ 0, . . . , Pr−1 ≥ 0, y2 − Pr = 0, Z1 = 0, . . . , Zk = 0, N 6= 0.

Using the inductive hypothesis we obtain a homogeneous strong incompatibility:y[P1 ≥ 0, . . . , Pr−1 ≥ 0, y2 − Pr = 0, Z1 = 0, . . . , Zk = 0, N 6= 0]
y

homogeneous

that corresponds to the explicit algebraic identity:

S +
∑

i

δiAiB
2
i + (y2 − Pr)C + Z1C1 + · · ·+ ZkCk = 0

where S = N2s (s ∈ IN), 0 < δi ∈ K, Ai ∈M(P1, . . . , Pr−1) ⊂ K[x] and Bi, Ci, C ∈ K[x, y].
The homogeneous identities:

y2m − Pm
r = (y2 − Pr)(y2m−2 + y2m−2Pr + · · ·+ y2Pm−2

r + Pm−1
r )

allow us to replace, in the Bi and Ci, every y2m by Pm
r and every y2m+1 by yPm

r , obtaining a new homoge-
neous identity with the following structure :

S +
∑

i

δiAi(Ei + yFi)2 + (y2 − Pr)G + Z1(G1 + yH1) + · · ·+ Zk(Gk + yHk) = 0

with Ei, Fi, Gi,Hi ∈ K[x] and G ∈ K[x, y]. Developing the squares and replacing y2F 2
i by PrF

2
i , after

grouping the y terms, we obtain a new homogeneous identity:

S +
∑

i

δiAiE
2
i +

∑
i

δiAiPrF
2
i + (y2 − Pr)H + Z1G1 + · · ·+ ZkGk + yK = 0

with K ∈ K[x] and H ∈ K[x, y]. This last identity implies that H = 0 (and K = 0): otherwise considering
H as a polynomial in y, its leading coefficient is the leading coefficient (with respect y) of the left hand
side of the previous identity, which implies directly its vanishing. This last assertion provides the desired
homogeneous identity (without y):

S +
∑

i

δiAiE
2
i +

∑
i

δiAiPrF
2
i + Z1G1 + · · ·+ ZkGk = 0

and the proof of the theorem.

The homogeneous Positivsllensatz obtained in the previous theorem is more general than the versions
presented in [Ste2], [Del1] or [Guan], because of the use of more general weights. In [Ste2] all the variables
have weight equal to 1, and in [Del1] and [Guan] the weight of some variables is equal to 1 and for the others
is equal to 0. Our homogeneous version, making the distinction between variables and parameters as in
theorem B (?), does not appear in [Guan]. In fact all the proofs are based on the algorithm shown in [Ste1]
(even the one in [Guan]).

A Projective Finiteness Theorem.
This section is devoted to presenting a Finiteness Theorem for projective spaces. We remark that a ho-
mogeneous Finiteness Theorem more general than the one to be presented in this section can be probably
stated (and proved), but we restrict our attention only to the cases appearing in the applications we are
going to obtain. This theorem will be only applied to a semialgebraic set in the coefficient space which will
be considered as a projective space in the usual natural way.
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The real projective space, IPu(R), can be regarded as a closed and bounded affine real algebraic variety
(see [BCR] chapter 3). To every vectorial line ∆ in Ru+1 is assigned the matrix Π∆ corresponding to the
orthogonal projection on ∆. This matrix is an element of the affine 0Q-algebraic set:

Qu(R) = {M ∈Mu+1(R) : M = M t, M2 = M, Trace(M) = 1}.

This provides a biregular isomorphism Ψ between IPu(R) and Qu(R). If z is a nonzero vector in ∆ then the
matrix Ψ(∆) = Φ(z) = y has in the (i, j)–position:

yi,j =
(zizj)
‖z‖2

.

Semialgebraic sets, euclidean topology and semialgebraic functions on IPu(R) are well defined: see, for
example, [BCR] chapter 3. It is also very easy to verify that any open semialgebraic set in IPu(R) can be
characterized by the corresponding semialgebraic open set in Ru+1 \ {(0, . . . , 0)} or by the corresponding
open semialgebraic set in the unit sphere. The bijection Ψ is also an isomorphism for these semialgebraic
notions.

Definition II.3 (Basic projective semialgebraic sets)
A closed (resp. open) K–semialgebraic set in the projective space IPu(R), regarded as the corresponding
semialgebraic set in Ru+1 \ {(0, . . . , 0)}, is a basic projective K–semialgebraic set if it can be described as a
finite intersection of closed (resp. open) sets with the following type:

{ζ ∈ Ru+1 \ {(0, . . . , 0)} : S(ζ) ≥ (resp. >) 0},

where S is a homogeneous polynomial with even degree in K[z].

Let F be a closed K–semialgebraic set in Qu(R) ⊂ R(u+1)2 . Using the Finiteness Theorem, the set F
can be described as a finite union of basic closed K–semialgebraic sets:

F =
h⋃

k=1

nk⋂
`=1

{η ∈ R(u+1)2 : Rk,`(η) ≥ 0}

where Rk,`(y) ∈ K[y] and y = (yi,j)1≤i,j≤u+1.
For every polynomial R(y) of degree d, the polynomial Φ•(R) is defined as follows:

Φ•(R)(z) = ‖z‖2dR(Φ(z)).

Clearly the polynomial Φ•(R) is homogeneous with even degree and allows us to describe the closed set G
in Ru+1 \ {(0, . . . , 0)} corresponding to Ψ−1(F ) in the following terms:

G =
h⋃

k=1

nk⋂
`=1

{ζ ∈ Ru+1 \ {(0, . . . , 0)} : Φ•(Rk,`)(ζ) ≥ 0}

where the Φ•(Rk,`)(z) are even degree homogeneous polynomials in ∈ K[z].
Using the same arguments for the open case we have obtained the proof of our projective Finiteness

Theorem.

Theorem II.4 (Projective Finiteness Theorem)
Every closed (resp. open) K–semialgebraic set in the projective space IPu(R), regarded as the corresponding
semialgebraic set in Ru+1 \ {(0, . . . , 0)}, can be described as a finite union of basic closed (resp. open)
projective K–semialgebraic sets.
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Remark II.5
All the homogeneous polynomials involved in the description of a closed semialgebraic set in IPu(R) as a
finite union of basic closed projective semialgebraic sets can be chosen with the same degree: it suffices to
multiply those with smaller degree by a convenient power of the polynomial z2

1 + · · ·+ z2
u+1.

Homogeneous semialgebraic functions (case of projective spaces).
Projective space IPu(R) is a non singular real 0Q-algebraic variety. This implies that the rational, regular
and Nash functions are well defined on IPu(R).

Homogeneous polynomials with even degree, P : Ru+1 → R, allow us to define, through its restriction
to the sphere, a particular family of regular functions on IPu(R). These functions agree with the Φ•(R)
introduced in the previous section and they are a subring: if P and Q do not have the same degree then, to
obtain P +Q, it suffices to multiply the one with the smaller degree by a convenient power of z2

1 + · · ·+z2
u+1

before performing the addition. Nevertheless this subring can not be defined in an intrinsic way.

Definition II.6
Let q be a nonnegative integer. A semialgebraic function

f : Ru+1 −→ R
ζ 7−→ f(ζ)

is said to be homogeneous with weight q if

∀λ ∈ R f(λ · ζ) = λqf(ζ).

When q is even, the restriction of such a function to the unit sphere defines a semialgebraic function on
IPu(R).

We shall be especially interested in the case when the function f can be defined by means of a straight-
line program where all the assignments are “homogeneous” and rendering evident the properties of f we
need. A first case, where this situation appears, corresponds to some semipolynomial functions.

Definition II.7
An even homogeneous K-Cr-semipolynomial expression f is a straight-line program where every instruction
is a “homogeneous” assignment ti ←− . . . allowing us to give, without ambiguity, an even weight to the
variable ti. More precisely, the indexes i are ordered in a strictly increasing way (the last ti defines f) and
the instructions can have only the two following types:

? tj ←− P (z1, . . . , zu+1, ti1 , . . . , tik
) where P ∈ K[z1, . . . , zu+1, ti1 , . . . , tik

] is homogeneous with even
weight and every ih is smaller than j,

? tj ←− |ti|s with s odd, s > r and i < j.

We remark that t1 is a homogeneous polynomial in the variables zi.

As in the non-homogeneous case, the two following facts, concerning an even homogeneous K-Cr-
semipolynomial expression, are true:

• any variable ti inside the program defines a K-Cr-semipolynomial that is homogeneous with even degree
and of class Cr,

• the assignments in the program can be characterized by systems of equations and inequations.

It is easy to show that the homogeneous version of lemma I.7 is true. More precisely, using our projective
Finiteness Theorem and remark II.5 it is possible to state the analogous statements to I.7 and I.8.

Proposition II.8
1-. If k and r are positive integers and f1, . . ., fk are even homogeneous K-Cr-semipolynomial expres-

sions, then it is possible to construct in an explicit way two even homogeneous K-Cr-semipolynomial
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expressions, g and h, verifying the following equivalences:

g > 0 ⇐⇒ f1 > 0 or . . . or fk > 0,

g ≥ 0 ⇐⇒ f1 ≥ 0 or . . . or fk ≥ 0,

h > 0 ⇐⇒ f1 > 0 and . . . and fk > 0,

h ≥ 0 ⇐⇒ f1 ≥ 0 and . . . and fk ≥ 0.

2-. If r is a positive integer and F a homogeneous closed K-semialgebraic set (regarded as a closed semialge-
braic set in Ru+1 \{(0, . . . , 0)}), then it is possible to construct in an explicit way an even homogeneous
K-Cr-semipolynomial expression h satisfying:

ζ ∈ F ⇐⇒ h(ζ) ≥ 0.

3-. Statements similar to (2) for open and locally closed sets are true.

Next we study the straight-line programs defining some particular homogeneous Nash functions.

Definition II.9
Let U be an open semialgebraic set in Ru+1 \ {(0, . . . , 0)} saturated by the equivalence relation ≡ defining
in the usual way the projective u-dimensional space. A function f ∈ A(Ru+1,K, U) is said to be homoge-
neous with even weight if its definition is made through a straight-line-program where every instruction is
a homogeneous assignment ti ←− . . . allowing us to give an even weight to the variable ti. More precisely,
the indexes i are ordered in a strictly increasing way (the last ti defines f) and the instructions can have
only the two following types:

? tj ←− P (z1, . . . , zu+1, ti1 , . . . , tik
) , where P ∈ K[z1, . . . , zu+1, ti1 , . . . , tik

] is homogeneous with even
weight and every ih is smaller than j,

? tj ←−
√

t2i1 + · · ·+ t2ik
with every ih smaller than j, the tih

with the same weight (which is assigned

to tj) and t2i1 + · · ·+ t2ik
defining a strictly positive function on U .

The functions verifying the conditions in the last definition are a well defined class of Nash functions on
the projective space IPu(R). The same arguments used to prove our projective Finiteness Theorem provide
a Nash version for the projective open semialgebraic sets. The details are left to the reader, using remark
II.5 to equalize degrees when needed.

Theorem II.10
If U is an open semialgebraic set in Ru+1 \ {(0, . . . , 0)} saturated by the equivalence relation ≡, then there
exists a function f ∈ A(Ru+1,K, U) strictly positive on U , vanishing outside U and defined as homogeneous
with even weight.

In [GLM] it is proved that every integral semialgebraic continuous function can be described by a
straight-line-program using as instructions polynomials with coefficients in K and some elementary root
functions (which are continuous and 0Q-semialgebraic). The proof used there could probably be adapted to
the homogeneous general case providing more general definitions and using the fact that any root function
of a monic degree d polynomial

(ad−1, . . . , a0) 7−→ ρσ(ad−1, . . . , a0)

is homogeneous with weight p if every ai is homogeneous with weight (d− i)p.

III. Parametrizations in the homogeneous case.

Let K be an ordered field and R its real closure. The theorems for the homogeneous case shown in section
II will allow us to obtain the homogeneous versions of the parametrization theorems proved in section I. In
what follows the space of coefficients is always a projective space.
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Homogeneous Cr Parametrization.

Theorem III.1 (Rational, homogeneous, Cr parametrization for some cases of the Positivstellensatz)
Let r be a positive integer. We give weights to the variables xi and to the parameters cj . All the cj have the
same non–zero weight, independent of the xi’s weights (for example the weight of every xi could be (ri, 0)
with ri a nonnegative rational and the weight of every cj could be (0, 1))1. Let IH(c,x) be a generalized
system of sign conditions on homogeneous polynomials in K[c,x]. Let SIH (R) be the semialgebraic set
defined by

γ ∈ SIH (R) ⇐⇒ ∀ξ ∈ Rn IH(γ, ξ) is false,

and let us assume that SIH (R) is a locally closed projective set. If γ ∈ SIH (R) then the impossibility of
IH(x) := IH(γ,x) inside Rn is made obvious by a strong incompatibility of fixed type (independent of γ) and
with coefficients given by K-Cr-semipolynomials homogeneous with even weight in c and with all the terms
in the sum homogeneous with the same degree in c.

Proof:
As a consequence of proposition II.8 and theorem II.2, it is enough to use the same proof presented for I.9.
It is also possible to introduce in the homogeneous case the same refinements presented in I.9 for the non-
homogeneous case. The independence between the weights of the variables and the parameters guarantees
that SIH (R) is a cone (i.e., an union of rays): this is the reason why we need the projective hypothesis on
SIH (R).

Next we prove the homogeneous statements in Theorem A. The existence of the linear form hn,d(c) is
due to the following fact: for each η ∈ ZZn \ {(0, . . . , 0)}, the linear form in c, fn,d(c, η), is nonnegative if
c = γ ∈ IFn,d(R). If we consider a finite set of points in ZZn \ {(0, . . . , 0)} such that the corresponding linear
forms are a basis of the dual space, then hn,d(c) can be defined as the sum of these linear forms.

Now we consider the generalized system of sign conditions

IH(c,x) = [hn,d(c)fn,d(c,x) < 0].

The saturated closed set IFn,d(R) ∪ −IFn,d(R) is strictly contained in SIH (R). Let un,d(c) be an even
homogeneous K-Cr-semipolynomial expression satisfying

∀γ ∈ Rm
(
un,d(γ) ≥ 0 ⇐⇒ γ ∈ IFn,d(R) ∪ −IFn,d(R)

)
.

Then we consider the following impossible generalized system of sign conditions

IK(c,x) = [un,d(c) ≥ 0, hn,d(c)fn,d(c,x) < 0].

Giving the weight 0 to the xi’s and the weight 1 to the cj ’s and reasoning as in theorems I.9 and III.1, we
get the complete proof of the Theorem A in the introduction.

To prove the item ? in Theorem B, we use the generalized system of sign conditions

IH(c,x) = [c1gn,d(c,x) ≤ 0].

In this case SIH (R) = IUn,d(R)∪−IUn,d(R). The desired proof is obtained by giving the weight (0, 1) to the
xi’s and the weight (1, 0) to the cj ’s and applying Theorem III.1.

To prove the item ? in Theorem C, we use the generalized system of sign conditions

IH(c,x) = [g1(c,x) = 0, . . . , gp(c,x) = 0].

In this case SIH (R) = Wlst(R). The desired proof is obtained by giving the weight (0, 1) to the xi’s and the
weight (1, 0) to the cj ’s and applying Theorem III.1.

1 More precisely, the weights of the xi are independent of the weights of the cj if the intersection of the two corresponding

generated subspaces over 0Q is trivial.
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Homogeneous Nash Parametrization.

Theorem III.2 (Homogeneous Nash parametrization for some cases of the Positivstellensatz)
We give weights to the variables xi and to the parameters cj . All the cj have the same non–zero weight,
independent of the xi’s weights. Let IH(c,x) be a generalized system of sign conditions on homogeneous
polynomials in K[c,x]. Let SIH (R) be the semialgebraic set defined by

γ ∈ SIH (R) ⇐⇒ ∀ξ ∈ Rn IH(γ, ξ) is false,

and let us assume that SIH (R) is an open projective set on m+1 variables. If γ ∈ SIH (R) then the impossibility
of IH(x) := IH(γ,x) inside Rn is made obvious by a strong incompatibility of fixed type (independent of γ)
and with coefficients given by homogeneous functions with even degree in A(Rm+1,K,SIH (R)) vanishing
outside of SIH (R), all the summands being homogeneous and with the same degree in c. In particular, these
functions are Nash on the open set SIH (R) and if K is real 2-closed (every positive element in K is a square)
then they send Km+1 into K.

Giving (0, 1) as weight for every variable xi and (1, 0) for every parameter cj , the previous theorem
provides as particular cases the items (∗) in theorems B and C in the introduction.

Homogeneous C∞ Parametrization.

Theorem III.3 (Homogeneous C∞ parametrization for some cases of the Positivstellensatz for IR)
Let K be a discrete subfield of IR . We give weights to the variables xi and to the parameters cj . All the
cj have the same non–zero weight, independent of the xi’s weights. Let IH(c,x) be a generalized system of
sign conditions on homogeneous polynomials in K[c,x]. Let SIH (R) be the semialgebraic set defined by

γ ∈ SIH (R) ⇐⇒ ∀ξ ∈ Rn IH(γ, ξ) is false,

and let us assume that SIH (R) is an open projective set. If γ ∈ SIH (R) then the impossibility of IH(x) :=
IH(γ,x) inside Rn is made obvious by a strong incompatibility of fixed type (independent of γ) and with
coefficients given by functions in c of class C∞, analytic on SIH (R) and vanishing outside SIH (R).

Giving (0, 1) as weight for every variable xi and (1, 0) for every parameter cj , the previous theorem
provides as particular cases the items (�) in theorems B and C in the introduction.

IV. Conclusions: the constructive content of the results.

In Constructive Mathematics (see [BB] or [MRR]), the theorems presented in the previous sections are
true for any discrete ordered field K and its real closure R (see [LR]), because in this setting we have a
constructive proof of the Positivstellensatz (see [Lom1]).

This paper has been written from the point of view of a constructive mathematician (see [BB] or [MRR]).
Anyway it can be read as a paper in classical mathematics where all the proofs are effective, in particular
without using the Axiom of Choice or the law of the excluded middle, providing primitive recursive algorithms
(in case of primitive recursive discrete real closed fields) or uniformly primitive recursive ones (in case of
discrete real closed fields, see [LR], e.g., if the structure of coefficient field is given by an oracle giving the
sign of any polynomial with integer coefficients evaluated in the coefficients of the problem).

It seems also important to study the constructive content of the presented results when working with
the field of the real numbers, IR, in Constructive Analysis (see [BB]). Such real numbers are defined as
(explicitly) Cauchy sequences of rational numbers but, at every moment, we only know a finite number of
terms in these sequences. This discussion is really needed for the C∞ parametrization theorems where the
real numbers appear in an unavoidable way.

From an algorithmic point of view this means that the coefficients appearing in the theorem, the param-
eters in c (if we are in a parametrization theorem) and the variables x are given by oracles providing suitable
rational approximations (depending on what has been asked to the oracle) of these real numbers and that
we look for uniform algorithms (which, in general, will be uniformly primitive recursive). The proofs of the
theorems presented in this article do not provide automatically such algorithms, i.e., in this case the proofs
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are not constructive because in IR we have no sign tests. Anyway these theorems could have a constructive
version, especially in the case where the semialgebraic set SIH (IR) is defined on a discrete subfield of IR. For
example, this happens in the 17th Hilbert’s Problem already considered in [DGL] and [GL1].

The results presented in this section will be discussed in a more detailed form in [GL2]. We assume,
in any of the parametrization theorems, that the polynomials in (c,x) defining the system IH have their
coefficients inside some discrete subfield K of IR. This is the case, for example, in theorems A, B, and C
in the introduction. Let R be the real closure of K. Clearly we have in a constructive way the following
equivalence:

IH(γ, ξ) is false for every ξ ∈ Rn ⇐⇒ γ ∈ SIH (R) ⇐⇒ h1(γ) > 0 and h2(γ) ≥ 0

where h1 and h2 are two continuous K-semialgebraic functions.
If SIH (R) is closed (resp. open) then we can write h1 = 1 (resp. h2 = 1) or delete the sign condition

h1(c) > 0 (resp. h2(c) ≥ 0). Let SIH (IR) be the set defined by:

SIH (IR) = {γ ∈ IRm : h1(γ) > 0, h2(γ) ≥ 0}.

So defined, SIH (IR) depends, a priori, on SIH (R) and also on the semialgebraic functions h1 and h2. It can
be proved that the actual dependence is only on SIH (R) due to the fact that some easy cases of the classical
transfer principle are still true in a constructive setting (see [GL2]).

First we prove that if γ ∈ SIH (IR) then the algebraic identity constructed implies that the generalized
system of sign conditions IH is false for every ξ ∈ IRn. In fact the system IH will be impossible under the
strong constructive form:

conjuntion of
strict sign conditions =⇒ constructive disjunction of

strong negations of non strict sign conditions

This is shown by assuming, without loss of generality, that IH is the system:

A(c,x) 6= 0, B1(c,x) ≥ 0, . . . , Br(c,x) ≥ 0.

With the constructed algebraic identity, we have the implication (where the “∨” are constructive):

∀γ ∈ IRm ∀ξ ∈ IRn
((

h1(γ) > 0 ∧ h2(γ) ≥ 0 ∧A(γ, ξ) 6= 0
)

=⇒
(
B1(γ, ξ) < 0 ∨ . . . ∨Br(γ, ξ) < 0

))
which can be read in the following terms:

∀γ ∈ SIH (IR) ∀ξ ∈ IRn [A(γ, ξ) 6= 0 =⇒ B1(γ, ξ) < 0 ∨ · · · ∨Br(γ, ξ) < 0]

as we wanted to show.
Finally it should be necessary to discuss, case by case, how the condition γ ∈ SIH (IR) is implied (in the

constructive way) by the impossibility of IH(γ,x) in IRn. Here we consider only the converse in the case of
Theorem B. We have just proved the constructive implication:

∀γ ∈ IRm
(
h(γ) > 0 =⇒

(
∀ξ ∈ IRn \ {(0, . . . , 0)} gn,d(γ, ξ) > 0

))
with h(c) a well defined continuous 0Q-semialgebraic function. The goal to be achieved is the constructive
proof of the converse presented in the following form:

∀γ ∈ IRm
((
∀ξ ∈ IRn \ {(0, . . . , 0)} gn,d(γ, ξ) > 0

)
=⇒ h(γ) > 0

)
.

First we restrict our attention to the compact spheres

Sm(IR) = {γ ∈ IRm : ‖γ‖ = 1} Sn(IR) = {ξ ∈ IRn : ‖ξ‖ = 1}
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and define the functions:

f(c) = sup{0, h(c)} k(c) = sup{0, inf{gn,d(c, ξ) : ξ ∈ Sn(IR)}}.

Since SnIR is compact, the function k(c) is continuous and well defined on IRm, f and k being the extensions
by continuity of their restrictions to the real algebraic numbers which can be obtained by the methods of
discrete Real Algebraic Geometry.

The zeroes of f are contained in the zeroes of k in the discrete case. This fact allows us to obtain a
 Lojasievicz Inequality (hidden in the parametrized Positivstellensatz):

∀γ ∈ Sm(R) k(γ)p ≤ a · f(γ)

with a a positive rational. This non-strict inequality is extended by continuity to IRm which provides a
constructive proof of the implication:

∀γ ∈ IRm
(
k(γ) > 0 =⇒ f(γ) > 0

)
and for the implication:

∀γ ∈ IRm \ {(0, . . . , 0)}
(

inf{gn,d(γ, ξ) : ξ ∈ Sn(IR)} > 0 =⇒ h(γ) > 0
)
.

The desired converse will be fully proved if we are able to prove constructively the implication:

∀γ ∈ Sm(IR)
((
∀ξ ∈ Sn(IR) gn,d(γ, ξ) > 0

)
=⇒ inf{gn,d(γ, ξ) : ξ ∈ Sn(IR)} > 0

)
i.e., a polynomial with real coefficients strictly positive on Sn(IR) is lower bounded on Sn(IR) by a strictly
positive real number.

To clarify the constructive meaning of this kind of results, true in the classical setting, is one of the
objectives of [GL2]. For the reader not yet convinced by this philosophy, let us remark that this question
has a precise and incontestable mathematical meaning: to find an algorithm computing a strictly positive
lower bound for a polynomial with real coefficients on the sphere knowing that such polynomial is strictly
positive on the sphere.

A first algorithm appears in a natural way: since the γi’s are supposed known through oracles providing
suitable rational approximations then for every integer k it is computed with precision 1/2k a lower bound
for gn,d(c,x) on the sphere Sn(IR). This process will stop when the result of the computation assures that
this lower bound is strictly positive (of course after a finite, but not determined, number of steps).

The reader convinced by this algorithm has arrived to the conclusion that Theorem B has been proved
constructively for the field of the real numbers “á la Cauchy”. Anyway, taking a stricter constructive point
of view, as in [BB], this algorithm does not solve fully the problem because it is not possible to estimate
its computing time: we have no constructive proof for the termination of the algorithm. But if we are able
of reducing the computation of the minimum on the sphere to the computation of the minimum on a finite
number of points, then the constructive proof will be obtained.

Nevertheless it is well known that there exists no general constructive proof of the classical theorem
assuring that any uniformly continuous and strictly positive function on a compact set is lower bounded by
a strictly positive real number. This impossibility comes from the fact that one can compute a recursive (in
a reasonable sense) and uniformly continuous function which takes its minimum, zero, only in non recursive
points, of a compact interval (see for example [Bee], Theorem 9.1, pp. 73).
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