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Abstract 

The fact that a real univariate polynomial misses some real roots is usually overcome by 
considering complex roots, but the price to pay for, is a complete loss of the sign structure 
that a set of real roots is endowed with (mutual position on the line, signs of the derivatives, 
etc.). In this paper we present real substitutes for these missing roots which keep sign properties 
and which extend of course the existing roots. Moreover these "virtual roots" are the values of 
semialgebraic continuous - rather uniformly - functions defined on the set of monic polynomials. 
We present some applications. @ 1998 Elsevier Science B.V. 

A M S  Classification." Primary 14Q20, 14P10 

O. Introduction 

The problem kn o wn  as Pierce-Birkhoff  conjecture is the fol lowing:  take a real valued 

cont inuous  funct ion on R" which is a piecewise polynomial ,  with a finite number  of  

pieces (i.e. a "C0-spl ine");  can you  write it down as a finite combina t ion  o f  sup and 

in f  of  po lynomia ls?  Under  this form the problem has been  solved for n _< 2 and the 

proof  for n = 2 [3] (see also [2]) uses actually a certain parametr izat ion of  the 
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one-dimensional case. Unfortunately this parametrization is not good enough to 
get the result for higher dimension and one is still looking for some path in this 
direction. 

Actually, the proof in the low dimension case uses the notion of "truncation of a 
polynomial" which is the following: if u is the rth real zero of the degree d univariate 
polynomial P(X),  the "rth truncation" of  P, ~bd, r(P) is the function defined as 0 when 
x _< u and equal to P(x) for x _> u. The essential point is that ~ba, r(P) is an Inf-Sup 
definable function (ISD in short) and that its formal description with sup and inf is the 
same for every other polynomial Q as long as the relative position of the real roots of 
all the successive derivatives of  Q is the same as for P. This kind of "local uniformity" 
makes possible to define ~ba, r(P) for multivariate polynomials P(X, Y), considering X 
as parameters, as long as __X belongs to some semi-algebraic set, precisely described by 
the sign conditions which define the position of the zeroes of the Y-derivatives of P; 
and this is sufficient to get the proof in dimension 2. But, for higher dimensions, we 
need more uniformity in the one-dimensional case. In particular, it would be nice to 
have this partially defined function ~ba, r, defined everywhere on the parameter space. 
This is of course impossible in general: the rth real zero alone need not exist for a 
given value of X. Of course, life would be easier if  every monic degree d polynomial 
would have d real roots! 

Actually, the notions of "virtual root" we are going to introduce in this paper will 
give a good substitute to this unreachable paradise and will, in some sense, "render 
hyperbolic every polynomial" (a polynomial is hyperbolic when its roots are real). 
More precisely, we have two classes of "virtual root functions" defined on the set of  
degree d monic univariate polynomials of ~[Y] (which can be identified to Ea) and 

one of these classes is the following: 

For every integer d > 1 and every integer 0 < j < d, there is a real valued semi- 
algebraic continuous function Pa,j on ~d, such that Pa,j(P) is the j th real root 
of  P when P is hyperbolic, and which satifies in addition the sign conditions 
we expect for an actual j th root. For example Pa,j(P)<_ Pa-I , j (U) _< Pa,j+~(P) 
if p1 is the derivative of P. 

Then, once we have our hands on the rth virtual root pa, r(P)(X_) of a degree d > r 
monic polynomial P(X,  Y) everywhere on the parameter space, the next step towards a 
solution of Pierce-Birkhoff conjecture would be to construct the "rth virtual truncation" 
of  P as an ISD function coinciding with P for Y > Pa,r and "going to zero as fast 
as possible" for Y _< Pal, r, and giving of course the actual truncation in case Pa,~ is 
an actual root. This is not yet completely worked out but should be available in the 
near future. Nevertheless, as early applications of  these notions, we prove here the two 

following results: 
(1) a continuous version of Thorn's lemma, 
(2) the closure under Sup and Inf of  the ring generated by the virtual roots is the 

integral closure of  the polynomial ring ~[XI . . . . .  X,] inside the real valued continuous 

functions on IR ~. 
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The paper is organized under the following headings: 

1. General tools 
2. The rth virtual root 

3. Thorn's virtual roots 

4. Examples 

5. Links and common properties 
6. Applications 

In what follows, we have chosen to work with the real numbers ~, but the discus- 
sion is valid for any real closed field. Furthermore, if the polynomials we start with 

]have their coefficients in a subfield K of a real closed field R, every new constructed 
polynomial also has its coefficients in this field K. 

1. General tools 

As we said in the abstract, we want to define on the basis of the set of monic univari- 

ate real polynomials, some collections of "virtual root" functions, extending everywhere 
the actual root functions in such a way that some sign conditions are preserved. There 

are essentially two ways to distinguish a given real root of a polynomial from the 

others: one is the rank of this root, the other is the collection of the signs taken at this 

root by the derivatives. 
The main idea is the following simple observation: suppose P is a parametrized 

polynomial in one variable and we are following some particular real root along the 

parameters. If for some value of the parameters this root disappears, then it becomes a 

root of the derivative and this becomes our "virtual root". But in both cases, actual or 

virtual root, the root realizes the local minimum of the absolute value of P, and this 

is the key observation. 
So, we are going to consider two sets of such root functions, called, respectively, 

"rth virtual root" and "Thorn's virtual roots". In the first case we want to preserve 

the rank of a given root among the others. In the second case we try to preserve the 

sign that every derivative of P takes on a given root, but it is a bit more compli- 

cated. 
The main tool to define these functions is the following one: 

Definition 1.1. We identify the set of monic degree d polynomials of R[X] to Ed, 
and P will be understood as a polynomial or as a point in ~d as well. Let ~d be the 

closed Q-semialgebraic set defined by: 

5Ca = { ( a , b , P )  : a<_b, deg(P) = d ,  Vx, y E  [a,b] P ' ( x ) U ( y ) > _ O }  

and Nd be the semi-algebraic function defined on 5ra by 

• ~ d ( a , b , P )  = z such that IP(z)[ = min{IP(u)l : u E [a,b]}. 
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An easy verification shows that the function ~ a  satisfies the following equality: 

a = b  

~ a ( a , b , P )  = a 
b 

the real root of  P in ( a ,b )  

i f  a = b, 

i f  (P(b)  - P ( a ) ) P ( a )  > O, 

i f  (P(b)  - P ( a ) ) P ( b )  <_ O, 

otherwise. 

(*) 

Proposition 1.2. I f  d is a nonnegative integer then: 

(1)  i f  (a ,b ,P)  E ~ and P has a real root z on [a,b] then ~ a ( a , b , P ) = z ,  

(2)  the function ~d  is continuous on 5~a, 

(3) t f  (a ,b ,P)  E ,9~a then the number x = ~ a ( a , b , P )  can be characterized by the 

following inequalities: 

a < x < b ,  

(x - a )P(a ) (P(b )  - P (a ) )  <_ O, (x - a )P(x ) (P(b)  - P (a ) )  <_ O, 

(b - x )P(b ) (P(b )  - P (a ) )  >_ O, (b - x )P (x ) (P (b )  - P (a ) )  > O. 

Proof. Parts (1) and (3) are easy considering the different cases appearing in the 

formula ( , ) .  Next we prove part (2) which is no more than proving that the real root 

of  a monotone polynomial  in an interval varies continuously with the coefficients. Let 

(a ,b ,P )  be an element in ~ and e. a strictly positive element o f  N. We search for a 

6 giving the continuity of  the function J/d. 

I f  b - a < e/2 then taking 6 = e/2 we have 

] a - a ' [ + l b - b ' l + l P - R [ < 6  ~ ] x - x ' ]  _ < m a x { b , b ' } - m i n { a , a ' }  

< I b - a l  + [ a - a ' l  + I b - b ' l  < e 

with (d ,b~,R)  E .5¢a, x = ~ d ( a , b , P )  and x ~=  ~a(a ' ,b ' ,R) .  
If  b - a  >_ e/2 and X = ~ d ( a , b , P )  then, writing c~ for +1 or - 1  according to the sign 

of  P(b)  - P(a) ,  we consider three cases: 

• I f x  < a + e / 2  then ~ . P ( a + e / 2 )  > 0. For a sufficiently small variation 6 o f  (a ,b ,P)  

in ~a,  the real number e .  P(a + e/2) remains strictly positive, the variation o f  a is 

smaller than E/2 and ~ d ( a , b , P )  remains on the interval [a,a + e/2). 

• I f  x > b - e/2, we proceed the same way as in the previous case. 

• If  a + e/2 < x  < b - e/2, then :~ • P(x - e/4) < 0 < :~. P(x  + e/4). For a sufficiently 

small variation di o f  (a ,b ,P)  in 5~a, : ~ . P ( x - e / 4 )  remains < 0, c~.P(x+e/4)  remains 

strictly positive, and the variations o f  a and b are smaller than e/4. So, ~d(a,  b, P)  

remains in the open interval (x - e/4,x + ~/4). 

Next we generalize the definition o f  .'~a to the cases a = - o c  or b = +vc .  This is 

achieved by considering the semialgebraic sets: 

5d,+ = { ( a , P ) :  Vx C [ a , + o o )  P ' ( x )  > 0}, 

5 ~ _  = { (b ,P ) :  Vx E ( - o c , b ]  ( - 1 ) d - l p ' ( x )  >_ 0} 
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defining on 5~d,+: 

~d(a,+oc,P) =.~d(a ,  max(a, l -I-  

and defining on ~d,-: 

i=oS, Up l{lai]}) 'P )  

~¢d(-oc, b ,P)= Nd (rain ( b , - 1 -  i=oS, U p l { l a i l } ) , b , P ) .  

Notation 1.3. If Q is a univariate polynomial then Q(i) will denote the ith derivative 
of Q, with Q(0)=Q, deg(Q) will be the degree of Q and lcof(Q) its leading coefficient. 
In order to be able to use the identification between ~d and the set of monic degree 
d polynomials, we define: 

Q[il _ o(d- i )  

lcof(Q(d-i)) 

as the normalized derivative of Q of degree i. We define Q* as the product of all 
normalized derivatives Q[i] of Q (Q included). 

2. The rth virtual root 

Let P E R[X] be a monic degree d polynomial. For every integer r such that 
0 < r < d, we want to define a function Pd,r on Nd having the following properties: 

(1) Pd, r is a continuous semi-algebraic function on Nd, 
(2) if P is hyperbolic and u c ~ is the rth real root of the polynomial P, then 

u = Pd, r(P), 
(3) Pd,r(P) ~ pd_l,r(Pt/d) ~ Pd, r+l(P). 
The restriction to monic polynomials is not really essential: we could be satisfied 

with polynomials such that the leading coefficient never vanishes, but then we would 
loose some uniformity in the continuity of Pd,r (see Section 5). But without loss of 
generality, we may as well replace monic by "quasi-monic", meaning that the leading 
coefficients are at least 1. Anyway, for simplicity, we will do everything with monic 

polynomials. 

Definition 2.1. Let P ( x ) = x  d - ( a d _ l X  d-I + ' ' '  + ao) be a monic polynomial in E[x]. 
For d > 0 and for any integer j ,  we define Pd,j(P) in the following inductive way: 

• if j <_ 0, we put Pd,j(P) = --oc, 
• i f j  > d, we put pd,j(P) = oc, 
• if d > 0  and l%j_<d ,  we define 

Pd,j(P) def t = ~ d ( P d - l j - ~ ( P / d ) ,  pd-l,j(e'/d),P). 

In particular, if P = X -  a then Pl,I(P)= a. Let us also define the sets: 

Ud,j(P) de.=_f {0¢C ~ : Pd,j-I(P) < a < Pd,j(P)}. 
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(These sets are open intervals when they are not empty, and they are empty in particular 

for j < 0 and j > d.) For simplicity, we will often write Ud,j(P I) and pa,j(U) instead 
o f  the corresponding terms with P'/d. Applying Proposition 1.2, it is easy to prove by 

induction the following proposition. 

Proposition 2.2. For d > 0 and 0 < j < d, the functions Pd,j are integral continuous 
functions on ~d defined over Q and they are roots of  the polynomial P*. On the 
other hand, every root of P is equal to some pd,j(P). 

Let us quote here the basic properties of  these Pa,~ which make P appear like 
hyperbolic with respect to the virtual roots: 

Proposition 2.3. For d > O, the functions Pa,~ have the following properties: 

(1) Vr Pd, r(P) <_ pd-l,r(P') <_ Pa,~+t(P); 
(2) Every monie degree d polynomial has d virtual roots (possibly equal); 
(3) (--1)d+~p(x) > 0 for x E Ud,~+I(P). 

Proof. Parts (1) and (2) are just from the definition. For (3), we make an induction 

on d. Anyway, there is something to prove only when the interval (Pa,~(P), Pa,r+~(P)) 
is not empty, so we may assume 0 < r < d. 

If  d = 1, it is easily checked. I f  d > 1, we have 

pd-l,r--l(P') <_ Pd, r(P) ~ Pd-l,r(P') <_ Pd, r+I(P) <-- Pd-I,r+I(P'). 

we consider two cases: 

• if  pd,r(P) = Pa-l,r(P'), then Ud, r+l(P) C_ gd_l,r._l(P') and we know by hypothesis 
that ( - 1 ) a + r U  < 0 on Ud-l,r+~(U). So (--1)~+rP is decreasing on Ud, r+I(P). As 

Pd,~+~(P) realizes the minimum of  IPI on Ud-l , r+J(P') ,  we get that ( - 1 ) a + r P  > 0 

on  Ud, r+l(P). 
• If  pd, r(P) < Pa-l,r(P'), then ( -1)a- l+r- lP  ~ > 0 on Ua-l,r(U) and ( - l ) d + ~ P  is 

increasing on this interval. As Pa,~(P) realizes the minimum of [PI on this interval, 
( - 1 ) a ÷ r P  must be positive on  Ud-l,r(Pt) fq Ud, r+l(P) ~L 0, and must be so on the 

whole of  Ud,r+l(P), for it cannot change sign on this interval. 

3. Thom's virtual roots 

Let P(x) =x d - (ad-lx a- 1 + . . .  + ao) be a monic polynomial in ~[x]. Thorn's lemma 

says in particular that if we fix the sign (in the large sense) of  every derivative of  
P, we get a set containing at most one root of  P. The virtual roots we are going to 

build up are real numbers x~ indexed by a list of  signs a = [a0 . . . . .  ~rd-1] having the 
property that when the d - 1 nontrivial derivatives of  P take the sign given by the list 

a at some real root of  P, then x~ is precisely this root. Of  course, it may happen that 
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the sign conditions on the derivatives produce an empty set: in that case the point x~ 
cannot satisfy the sign conditions (although it might be an actual root of  P) .  

Notat ion 3,1. We shall denote by a = [ao . . . . .  O'd] a list of  signs, ai E { + , - } .  The 
"length" ig(a)  will be d and a0 will always be equal to +.  The convenience of  this 
a0 will appear later. Concerning the list a we introduce the following symbols, for 
i =  1 . . . .  ,d: 

~ i = {  > i f o ' i = + ,  ~ i = { >  i f a i = + ,  
< if ~ri = --, < if  ai = --, 

a ~i) = [ao . . . . .  ad-i], a Ii]= [aO . . . . .  ai]. 

The basic semi-algebraic open set: 

{~ E ~ :  p[l](~) al 0 , . . . ,p [d] (~)  aa O} 

will be denoted by U~,(P) and the basic semi-algebraic closed set: 

{~ E R: p O ] ( ~ ) a l  0 . . . . .  PId](:z) ffd O} 

by F~(P). 

With the previous notations Thorn's  Lemma (see [1] for a proof) can be stated in 
the following terms. 

Theorem 3.2 (Thom's  lemma).  I f  the closed set F~(P) is not empty then it is a closed 

interval or a point, and its interior is always Ua(P). Moreover, ever); finite endpoint 

o f  the interval F~(P) is a root o f  some P(J). 

Definition 3.3. Suppose deg P = l g ( a ) = d  and e E { + , - } .  Here we assume that F~(P) 

is not empty. The two endpoints of  Fo(P) will be denoted by: r~(P)  with e = + for 
the right endpoint and e = - for the left endpoint. 

There are two special cases where the interval F~(P) is never empty and one of  its 
endpoints is infinity: 

a = [+, + ,  + . . . . .  +] ,  ~ = + ~ z~(P) = +oo,  

~r = [ + ,  - ,  + ,  - ,  + . . . .  ], ~ = - = = ~  ~ ( P )  = - e c .  

Excepting the two infinity cases, the symbols *~ represent semi-algebraic functions 
partially defined on ~a. In the following two cases, the symbol r~ provides a semi- 

algebraic function defined on the whole ~a: 

a =  [ + , + , +  . . . . .  +],  ~ = -  ~ ,~(P)  = m a x { ~  E ~ : P*(~)  = 0}, 

a = [ + , - , + , - , +  . . . .  ], e = +  ~ ~ ; ( P ) = m i n { a  E R ' P * ( = ) = 0 } .  

Let us introduce the function, also partially defined on Ea, denoted by p,(,~(P) 

and called actual Thom's root which is defined as the only real root o f  P inside the 
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closed interval [~0,...,~a_,l(P'/d), v-(~o,...,~a_~l(P'/d)] when the endpoints of  the interval are 
defined (possibly equal) and when such a root exists. The function po~,~, when defined, 
verifies the following equality: 

P[~°""'ae-'](P) = gTao,...,~rd--,,ad--I](P) = "~q[~o ...... d_l,--ad_i](P)" 

It is clear from the definition that every root of  P in ~, can be represented by some 

of  these symbols. The functions , and p will be extended as semialgebraic continuous 
functions to the whole of  ~d in an inductive way. 

Definition 3.4. I f  the degree d of  P is equal to 1, we define 

p[--](X a )  def (_+ def --  "C ,_](X a )  def 
= - = ~ t ~ , + l ( x - a )  = a ,  

*~+,_l(x a)  def - -  = - - 0 0 ,  "t'f+,+](X --  a )  def q-OC. 

I f  all the functions p and r for degree d - 1 are known then the definitions for 
degree d are: 

p[~o,...,~e_,](p) d~f ~ + "c 0,-.-,~a-,,vd d (P)  def 
= = r 0 O'a I O'd ~(P) t . ' .  " - -  , - -  - - I J  

def ~a(Z[oo,.,~d_d(p/d), + = - , zL,~o,...,,~_,l(p'/d),p), 

z~_0,...,~ d . . . .  d_,](p ) def= T(~o,...,~s_,l(eTd), ,~0,...,~,_,,_~_,](p) def= zi~ 0- ...... ~_,](P/d): 

Remark that if  ~ . a a = +  then "c~(P)='('(,~(P'/d) and if e . a d = -  then Cb(P)=p~,,,(P ). 
So we see inductively that excepting the infinity cases each function P ~-+ T~(P) is 
equal to some function P ~-+ p~H(P[J+I]), where j < d depends only on a and e. We 
then get the following proposition. 

Proposit ion 3.5. (1) The above defined functions p~ and r~ are defined on the whole 
of  Nd and are extensions of  the partial functions introduced in Definition 3.3. 

(2) The functions p~ are integral, Q-semi-algebraic and continuous on Nd, and 
verify, for every monic polynomial P of  degree d, the equality P*(p~(P)) = O. 

Proof.  The proof  is easy by induction on the degree, using Proposition 1.2 for the 
continuity and that P*(p~(P)) = 0 to show it is integral in (2). [] 

In order to understand these functions p~, it is convenient to introduce the following 

definition. 

Definition 3.6. For every monic polynomial P and every a of  length d, we define 
G~(P) = [z~-(P), z+(P)].  By construction, this closed interval (may be a point) depends 
continuously on P and coincides with F~ when the latter is not empty. 
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The main properties of  G~ are summarized below. 

Proposition 3.7. The interval G~ has the following properties: 
(a) G[+,+l(x - a) = [ a ,+ oc ]  and G[+,_l(x - a)  = [ - o c ,  a], 
(b) the interval G[~o,..,,~a_,](U ) is the union of the two intervals 

G[ao,..,,~j_~,_~d_,l(P) and G[~o,...,~_,,~_,](P ) 

with the right endpoint of  the first one equal to the left endpoint of  the second one, 
(c) / f  G~(P) is not reduced to a point then G~(P) = F~(P). 

Proof. Point (b) comes right from the Definition 3.4. For (c), it is clear by definition 
and case examination, that if G~(P) is not reduced to a point then G~(P) is the set of  

points e in Go~,(P') such that P(et)~aO. But then by induction on d, we may assume 

G~, , (P ' )  = F~,,,(P') and so G~(P) = F~(P). [] 

We can now understand better the functions p~ themselves: the virtual Thorn's roots 
are actual Thom's  roots o f  some derivative: 

Proposition 3.8. For every monic polynomial P (resp. Q) of  degree d (resp. d + 1) 

and a of length d - 1  (resp. d), each p~(P) (resp. z~(Q)) is equal to an actual Thorn's 
root of some p~ir-t~(P [~]). 

Proof.  By definition of  r, it is sufficient to do it for p~. I f  d = 1, it is the definition. 
If  d > 1, let u =  p~(P). By construction, u E G~(P [a-ll) and if u is not an endpoint of  

this interval, it is a root o f  P. But in that case, by Proposition 3.7(c), it is the actual 

Thorn's root o f  P coded by a. So we may assume u is an endpoint of  this interval. 

Let r be the smallest integer such that u is an endpoint of  G~tr+l~(P[d). By Proposition 
3.7(b), u is inside G ~ ( P ( r - I ] ) ,  and by the same argument as above, must be a root 
o f  pfr], coded by a[r]. [] 

In the case of  rth virtual root the general pattern is quite easy: there is at most d 

virtual roots of  degree d, naturally ordered and there is generically exactly d such dis- 

tinct virtual roots (realized in specializing to hyperbolic polynomials). On the contrary, 
the situation for virtual Thorn's roots is not so clear: How many such generic roots do 

we have and how are they mutually ordered? Is there some specialization that gives 

the 2 a-1 a priori possible p~? We have the two following propositions. 

Proposition 3.9. For every d > 1 and every a of length d - 1, there is a real polyno- 
mial P of degree d such that pa(P) is an actual Thorn's root of  P. 

Proof. It is sufficient to show that for any sign condition 6 of  length d - 1 there is 

a real polynomial P of  degree d having a root inside U,(P). For degree 1 there is 

nothing to do and if d > 1, by induction we may assume that there exists a Q o f  
degree d -  1 having a root in U~I~(Q), making U~(P)~  0 for any antiderivative P 
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of Q. Adjusting the constant term, it is then easy to find such a P having a root in 
Ua(P). 

Of course, this implies that there are 2 a - l  distinct generic Thorn's virtual roots. 

Proposition 3.10. Let s ( d ) =  1 + d(d - 1)/2. 

(a) Every monic degree d polynomial has at most s(d) distinct Thorn's virtual 
roo  ts. 

(b) For every d >_ 1 there exists a monic polynomial P which has s(d) distinct 
Thorn's virtual roots. 

Proof.  By definition of  p~(P) (length(a) = d - 1), there is exactly one p~ in each 

G~(U), and in particular there is also exactly one in each nonempty F~. But the 

nonempty F~ make a partition of  N and their endpoints are zeroes o f  U*: the number 
of  intervals is then bounded by one more than the number of  roots of  U*, which gives 
(a). 

Now we show that this bound s(d) for nonempty F, (P)  is effectively obtained. 
Choose P such that P* is hyperbolic without multiple roots. I f  d = 1 or 2, it is clear. I f  

d > 2, assume the number of  intervals for P '  (determined by sign conditions on p(i), 

i > 2) is s(d - 1), then there are d - 1 intervals actually cut into two by the d -  1 

roots of  P '  and the number of  nonempty F~ is exactly s ( d -  l ) +  d -  1 = s(d). Let 

us show that the pa corresponding to these s(d) intervals produce s(d) different real 

numbers: if two such p~ would be equal, they would correspond to a common end 

of  two consecutive intervals, realizing the minimal of  the absolute value of  P on the 
union of  these two intervals. We have two cases: 

(1) IP( has a positive minimum at that point, but then cannot be hyperbolic, 

(2) The point is a root of  P, but is also a root o f  U* as an end of  a F~, giving a 
double root to P*: contradiction. [] 

Information about how the functions p~ are ordered is summarized in the next propo- 

sition. 

Proposition 3.11. Assume that deg(P)  = d and a is" a list o f  signs (+ or - )  with 

lg(a)  = d - 1. 

(a) I f  # is a list with length k - 1 (with d > k >  1) different f rom a, then the 

comparison, by > or <,  between pa(P) and pu(p[k]) is given by the followin9 rule 
involvin9 only the siyns in a and/~: 

I f  i is the first index such that ~ri ~ #i ( i f  # is an initial segment of  a then 

i = l g ( # ) +  1) then the sign o f p ~ ( P ) -  p~,(p[k]) is equal to a i - ] .a i .  
(b) I f  u is an element of  ~ then the comparison between u and p~(P) is given by 

"the same" rule than in (a) using the sign of  P[J](u) instead #j : 

I f  i is the first index such that ai ~ sign(pIi](u)) and i < d then the sign o f  

p~(P) - u is equal to a i _ l  • a i. I f  ai = sign(p[i](u)) for  i = 1 . . . .  ,d - 1 then the 

siyn o f  p~(P) - u is equal to - a i - 1 .  sign(P(u)). 
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P r o o f .  Part (a) is a direct consequence of  the formal construction o f  the symbols p. 

Part (b) comes from (a) when u -- p~(P). If  u ~ p then the result is clear when the 
considered symbol p~ corresponds to an actual Thorn's root o f  P coded by a. As any 

po is an actual Thorn's root of  some derivative pEj+l] coded by a [jl we compare u 

with poH(P [j+~]) as in the previous case (details left to the reader). [] 

4 .  E x a m p l e s  

Example 4.1. F ig  1 is the picture o f  the complete situation of  the rth virtual roots 
P4, j(x)  : =P4,j(P)(x) of  the polynomial P(x, y)  = ((x - 1 )z + (y  + 1 )2 _ 2)((x + 1 )2 + 

(y  - 1) 2 - 2) considered as a polynomial in y parametrized by x In F ig  1 we can 
see the union of  two circles corresponding to the zeroes o f  P, a cubic corresponding 

II to the zeroes o f  pry, an ellipse corresponding to the zeroes of  Py and the ),-axis being 

the zero locus of  p(y3) The number j on the picture denotes P4,j(X) and P4,2(X) has 
been drawn in thick 

Example 4.2. Table 1 gives the complete situation of  the p~ upto degree 5, and is 
easy to extend to any degree 

Table 1 

degree o f  the polynomial derivative 

0 + 
1 - • + 

2 t- • - - • t- 
3 - • t + • - + • - - • + 

4 + . -  - . +  - . +  + . -  - - :  + i -  + i -  - ' +  
s - I .  "1" "1"1"1" "1 • • • • "1" 
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Every point • in the table denotes a function p~ where the list a is obtained reading 

from the top until the considered point e. I f  we want to add a line to the table, we do 

it in such a way that each sign of  the bottom line subdivides in two, the first sign o f  
the two being the opposite o f  the existing sign. In the previous table it is easy to find 
some evident incompatibilities: 

• In degree 3 it is impossible to have the symbols p[+,_,_] and p[+,+_] representing the 
real roots o f  a polynomial because we would have a polynomial with two consecutive 
simple roots giving the same sign to the derivative. 

• In degree 4 we get two incompatibilities with the same type than the previous one, 
p[+_,_,+] with p[+,_,_,+] and p[+,+,_,_] with p[+,+,+,_]. 

• Again in degree 4 a stronger new type of  incompatibility appears: it is impossible 

to have simultaneously nonempty the two consecutive intervals F[+,_,__](P) and 

F[+,+,_,+](P). I f  F[+,__,_](P) and F[+,+_,+](P) were nonempty then the polynomial 
P~ would decrease from - to ÷ .  

• If, for example, p[_,__,_](P) is an actual Thom's  root, then the interval G[+,+_,+](P) 
is formed by only one point. Moreover, in this case, the roots coded by [÷,  ÷ , - , - ]  
and [+,  +,  + , - ]  cannot exist for P. 

An exhaustive analysis o f  Table 1 allows to find, by similar arguments, all the possible 
simultaneous Thom's  codings for the real roots o f  the same polynomial. 

Example 4.3. Max and Min are rth root functions and Thom's  root functions: 

k 

max{al . . . . .  a,}=pk, l ( H ( x - a i ) )  
t 1 

k 

min{al . . . .  ,ak}=pk~(II(x--ai))  
i=1 

= p[+,+,+,...,+] 

k (n,x o,,) 
i=1 

= p[+,_,+,_,...] 

k (n,x a,,) 
i=1 

The nth root function can be described as 

O) = pn,,(x ~ - a) = p[+,+,+,...,+l(x" - a). 

Example 4.4 (Root functions for a polynomial of degree 3). We consider the poly- 
nomial P = x 3 +  3px + 2q. The complement o f  pq(p3 + q 2 ) =  0 in the plane (p,q) 
(Fig. 2) has six connected components, {Ai : 1 < i < 6}, obtained by giving strict signs 
to p, q and p3 + q2. The border of  these open sets will not be considered because the 

root functions extend there continuously, 
Inside every Ai each of  the four Thom's  root functions has a fixed expression as an 

actual Thorn's root o f  P or one of  its derivatives. This fact is shown in the following 
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table: 

P[+,+,t](P) = { 
p[+,+,+](P)= the biggest real root of P if (p,q)EA1 UA3 UAs U A  6 

P[+I(P[1]) = 0 if(p,q)EA2 
p[+,+](p[z])= the positive real root of P~ (i.e. x/:-P) if (p,q)EA4 

pE+_+I(P) = { 
p[+,_,+I(P)= the smallest real root of P if (p,q)EA2 UA4 U A s  U A  6 

p[+](p[l]) = 0 if (p,q)EA~ 
p[+,_l(p[2])= the negative real root of Pt(i.e. -v/~---~) if (p,q)EA3 

pf+,+,_](P) = { 
p[+,+,_l(P)= the intermediate real root of P if (p,q)EA6 
p[+](p[1])=0 i f ( p , q ) E A I U A 2 U A 3 U A s  

p[+,+I(P[2])= the positive real root of pi (i.e. x / ~ )  if (p,q) C A4 

p[+,_,_](P) = { 
p[+,_,_j(P)= the intermediate real root of P if (p,q)CAs 

p[+j(p[l]) = 0 if (p, q) ~ A1 U A2 U A4 U A 6 

p[+,_](p[2])= the negative real root of P'(i.e. - ~ )  if (p,q)CA3 

5. Links and common properties 

In this section we are going to examine the relationship between the two kinds of 
virtual roots, and the properties they share. A question that comes first in mind is 
the following: is it possible to express one set of virtual roots in terms of the other? 
Proposition 5.2 below shows that the p~ can be expressed in terms of p&), but the 
converse is not yet known. Let us start with a definition 

Definition 5.1. Let a be a list of length d > O, always with ao = +. We define j (a )  as 
d 

1 + ~/=o(1 + aiai+l)/2 (the number of "no sign change" in a plus one). For instance 
j ( [ + , - , - 1 )  = 2 or j ( [÷,  + , - , - , - ] )  = 4. 
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Then we have 

Proposition 5.2. Let P be a degree d monic polynomial and a a list of  length d.  

Then, 
(1) I f  U~(P) ¢ 0 then U~(P)C_ Ud,j(~)(P). 
(2) I f  p~(P) is an actual Thom's root, then p~(P)= Pd,j(~)(P). 
(3) In general, for p~( P ), we have the following expression, which allows to express 

inductively the p~ functions as sup-inf  combinations of  the Pd.j functions: 

p~(P) =max{z~-(P ' ) ,  min{z~+(P'), Pd.j(~)(P)}}. 

Proof.  Let us prove (1) by induction on d. If  d = 1, everything is easy. I f  d > l, if 

U~(P) ¢ O, it is also the case for U~I,(P ')  and so U~,~(P')C_ Ud-t,j(~) by induction. 
By Proposition 3.7, we have two cases to consider: 

(a) U~,~(P I) = U~(P) and in that case there is no zero o f  P inside U~(P) and 

in particular Pd.j(a) and Pd.j(~)-I are outside U~(P) (otherwise they would be in 
Ud_I,j(#,))(P t) and they would be zeroes of  P inside U~(P)). So Ua(P) c_ Ud,j(~)(P). 

(b) F~,,(P') is the union of  two nonempty intervals F~!,)_~_,(P)O F~(,~o~_,(P), 
meaning the common endpoint is a zero o f  P inside U d_l,j(~,))(P'): it must be Pd.j(o~',) 
(P). So the left interval U~m_~_l (P  ) is contained in Ud.j(,m)(P)= Ud.j(,,,,,_,~_,)(P) 
and the right one U~,I~,~d_~(P ) is contained in Ua.I+j(~,,)(P)= Ud,j(~,,,~_~)(P), which 

proves (1). 
It is not hard to see that (1) implies (2): if p,(P) is an actual Thorn's root, 

then U~m(P') is not empty and is contained in Ud-I.j(~,~)(P'). The same is true for 

the closed corresponding intervals and the only zero of  P in Fd_l,j(a{,,)(P I) is then 

pd,j(~)(P) = p~(P).  

It is now easy to show (3): if U ~ m ( U ) = 0 ,  then G~(~,(P') is a point and the formula 

in (3) for p~(P) gives that point. I f  it is not empty, the same arguments as above 

show that, if p~(P) is inside this open set, it must be equal to Pd,j(~)(P), and if it 

is an endpoint o f  F~m(PI), then one o f  the intervals U~,,_~_,(P) or Uo~,,,~_,(P) 
is not empty and so contained in the corresponding Ud.j(~)(P), a being one o f  the 
two possible extensions o f  a (1). But then the formula gives the end point of  F~m(U) 
corresponding to p~(P). Finally, use the remark following Definition 3.4 in order to 

replace in Proposition 5.2(3) z~(U) by some p~ul(P [j+l]) (where j < d - 1 depends 

only on a and e). 

We have already proved that the virtual roots are continuous in the coefficients of  

the polynomials, but we know a little more: on a given compact ball o f  R d, they are of  

course uniformly continuous and we can compute the modulus of  continuity in terms 

of  the radius o f  the ball. Let us start with a notation. 

Notat ion 5.3. Let X be a complete metric space. We shall denote by Msk(X) the 
metric space o f  multisets with k elements in X, i.e. the complete metric space obtained 
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from X k with the semidistance 

dMs((Xi)i=l,...,k, (Yi)i=l,...,k) de~ min ( i m a x  d(xi, y,~(i,)}. 
2~s(k) 

Then we need the following lemma. 

Lemma 5.4. Let U be a convex set in ~n, X a metric space, f :  U , X a continuous 
function and F:  U ~ Msk(X) a uniformly continuous function with modulus of  
uniform continuity eg(e). Assume that for all u E U, f ( u )  C F(u). Then f admits as 
modulus of  uniform continuity the function: e, ~ eg(e/2k ). 

Proof. We assume w.l.o.g, that U is the unit interval and u = 0. We start with e and 
search for ~ such that for all u 'E(0 ,6) ,  we have d ( f ( u ) , f ( u ~ ) ) <  e. Let e ' =  e/k, 
6 = co(E/2k) and u' E (0, 3). 

Either all F(u)  is in the open ball B x ( f ( u ) , ( k -  1)e'), and then d ( f ( u ) , f ( u ' ) )  < 
( k -  1)e~+e/2k < e. Or there exists a j < k -  1 such that F(u)  is contained in the disjoint 
union of the open ball B x ( f ( u ) , j e ' )  and of the complement X -  B x ( f ( u ) , ( j  + 1)e'). 
Then, for all t E [0, u~], the set F(t)  is contained in the disjoint union of the open 
ball B x ( f ( u ) , j e ' +  e/2k) and of the complement of the corresponding closed ball 
X - B x ( f ( u ) , ( j +  1)e ' -e /2k) .  So, by connectivity, the point f ( t )  must remain in the 
first of these two disjoint open sets and d ( f ( u ) , f ( u ' ) )  < j e ' +  e/2k < e. [] 

Then we have 

Theorem 5.5 (Root functions local uniform continuity). When the ]ai[ a-i are bounded 
by M >  1, a modulus o f  uniform continuity co(M,Q (i.e. a function giving 6 from e 
in the definition o f  uniform continuity, with the ll norm in ~d) for the functions 
p~(ad- 1 . . . . .  ao) and pa,j(ad- 1 . . . . .  ao) is 

d 

( 1 e ) (M,e )=2M d ( d + l ) ~ d -  1)M 

Proof. A modulus of uniform continuity ~o(M,e) for the functions p~ and Pd,j is 
obtained using the following technical result appearing in [4, Appendix A, p. 276]: 

The multiset root function for monic degree d polynomials: 

C d , MSd(C) 

P , , { c t E C : P ( ~ ) - - O }  

(considering multiplicity) when the jail d-i are bounded by M >_ 1, admits the following 
modulus of  local uniform continuity, with the ll norm in Ca: 

2M ( 2 M ( 2 ~ / -  1) 
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Applying the lemma with the Ostrowski modulus for the multiset union of  complex 
roots of  the polynomials P and its derivatives (the modulus of  uniform continuity for 
the multiset of zeros of P is also good for its derivatives), we get the theorem. D 

Remark that Ostrowski's bound and Lemma 5.4 allows to determine explicitly a 
modulus of  local uniform continuity for any integral semi-algebraic continuous function 
by merely regarding the vanishing monic polynomial for the considered function. 

6. Applications 

In this section, we conclude with two applications. The first one is the following 
continuous version of Thorn's lemma. 

Theorem 6.1 (A continuous version for Thorn's lemma). Let d be an integer > 1 and 
a =  [ao . . . . .  era] a list of  elements in { + , - } .  We shall consider the monic polynomials 
with degree d as points o f  Ed. I f  we define the sets of  Eu : 

then the following statements ate verified: 
(1) W~ is a connected and closed Q-semi-algebraic set whose interior & V~. 
(2) V~ is" a connected and open Q-semi-algebraic set whose closure is W~. 
(3) For every P in W~ the set k~(P) is a nonempty closed interval and every finite 

end-point of  F~(P) is an integral continuous function of  P and a root of  P*. 
(4) Only two cases where an infinity end-point can appear: 

= [ + ,  + . . . . .  + ]  ) + o c ,  a = [ + ,  - ,  + ,  - ,  + . . . .  ] ) - o c .  

Proof. Parts (3) and (4) are clear after the detailed study on the sets F~(P) made in 

the previous sections. The following equivalences: 

z+(e)  + T~-(P) 
F~(P) # 0 ~ z+(P) EF~(P), U,,(P) # 0 ~ 2 ~ Uq(P) 

allow to show that W~ is a closed Q-semi-algebraic set and that V~ is an open Q- 

semi-algebraic set. 
Now we suppose w.l.o.g, that Gd = ad-l = H- and that we are not in an infinity case. 

For a degree d -  1 polynomial R we define 

Rl(x) = d  R(t)dt,  ~(R)=R1(z~,)(R)) .  

A simple verification provides the following description for the sets W~ and V~: 

W~ = {P: Fa(,)(P') # O, O(P',/d)> - P(O)} = W~(,, × R A  {P: 0 o u(P)>_ - P(O)}, 

V~ = {P: U¢,:,(P') ¢ O, O(Pr/d) > - P(O)} = V~(,, × R A  {P" ~ o 7:(P) > - P(O)}, 
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where n is the projection: 

71;: [~d ________+ ~ d - 1 ,  

P, , Pt/d. 

Proceeding by induction on d we obtain the remaining claims in (1) and (2) because 

Wo and V~ are cylinders bounded from below by the continuous semi-algebraic function 

~p o n + P(O) and whose base is a semi-algebraic set verifying the conditions in (1) 
and (2) by induction hypothesis. [] 

The second question we want to address here is the following: what kind of  functions 

do we get if  we take the closure under inf-sup of  the set o f  functions p~ or Pa.j? If  

we take a given continuous function on ~n which is integral over the n variable 

polynomials ~[XI . . . . .  Am], it is annihilated by a monic polynomial Q(X, Y) in Y with 

coefficients in E[X1 . . . . .  X~], and piecewise on R ~, it is a precise real root o f  Q(X, Y) 
(in terms of  rth roots or Thorn's roots), but in general, it does not admit a global 
description as Inf-Sup of  the virtual roots o f  Q(X, Y). A very simple example is the 

following: 

Example 6.2. Take Q(X, Y) = y 2  _ g 2, and f ( X )  = X. If  we had a description of  

f as Inf-Sup of  virtual roots of  Q, it would depend only on X 2, and so would be 

the same for X > 0 and X < 0. Of  course, we have other nice descriptions for f !  

But it means that if we want to describe integral continuous functions as Inf-Sup of  

virtual roots, we have to use other polynomials than Q. Theorem 6.4 discusses this 

aspect. 

Definition 6.3. If  p is either a rth root or Thom's  root function on Na, we define 
functions on R ~ in filling each occurrence o f  p with a polynomial in n variables. Let 

us call "polyroots in n variables" these functions on Nn (in both cases), and " Inf -  
Sup of  polyroots" the functions obtained in taking finite infima and suprema of  such 

functions. 

Then we get the following: 

Theorem 6.4. The closure of polyroots in h variables under sum, Inf and Sup (in both 
eases of  polyroots) is the integral closure of  E[Xl . . . . .  Xh] in the ring of continuous 
functions on Eh. 

Proof. It is clear that the Inf-Sup of  sums of  polyroots in h variables are continuous 

and integral over the polynomial ring R[X1 . . . . .  Xh], so the only thing to prove is the 
converse. Let f : Eh ~ R be an integral continuous function and Q(xl . . . . .  xh, y )  a 

polynomial in ~[xl .... ,xh,y], y-monic ,  with degree d in y, and verifying: 

Q(zq . . . . .  ~h, f ( # l  . . . . .  ~ h ) ) = 0  V(zq . . . . .  ~h) E O~ h. 
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We shall denote x = (x~,... ,Xh) and write: 

d - 1  

Q(x, y) = yd + Z Qk(x)Yk" 
k~O 

Let gl . . . . .  gm be the virtual root functions corresponding to degree d (m = d in case 

of  Pad and m = 2 d-l  in case of  Thorn's roots). Then for every i E {1, . . . ,m} the 
function defined by 

li(x ) = gi(Qd-1 (x_) . . . .  , Qo(x ) ) 

is a polyroot. After these definitions it is clear that the function 

m 

r i ( f ( x ) -  li(x)) 
i = 1  

is zero everywhere. 
Next, for every i E {1, . . . ,m},  we introduce the closed semi-algebraic set: 

Fi = {(xl . . . . .  ~h) E ~h: f ( x l , . . . ,  Zh) = li(oq . . . . .  ~h )}  

whose interior will be denoted by U,. 
Applying the Finiteness theorem we describe every Ui as a finite union of basic semi- 

algebraic open sets, i.e. by strict sign conditions over polynomials in O~[xl . . . . .  Xh]. Let 
{ P j : j E J }  be the family of  polynomials appearing in such a description and {Pj: 
j E K} the family obtained by completing the previous one until obtaining a separating 

family. 
Finally, we consider the nonempty open sets obtained in giving strict signs to the 

polynomials in {Pj : j E K}. This family will be denoted by { Vn : n E N}. As our family 
of  polynomials is separating then the closed semi-algebraic set obtained replacing in 
the description for Vn the condition < by < and the condition > by _> is the closure 
of Vn. Moreover, after the definition of the Vn's it is clear that they are disjoint: 

n ~  p ¢==~ VnY~Vp=~. 
The conclusion of the theorem will be obtained in constructing a sum of lnf-Sup of 

polyroots equal to f over the union of the sets Vn (which is dense in ~h). 
For every n E N let in be such that Vn C_ Ui, : this implies that the function f ,  over 

Vn, is equal to li,. Now we construct for every pair (n, p )  with n ~ p an Inf-Sup of 
polyroots Vn, p verifying the following conditions: 

'¢~ ~ V, Vn, p(a_) _> f(a__) =/i,(_~), 

V~_E Vp ~;n,p(~) <_ f(~_)~- liv(~_). 

I f  in = ip we define Vn,p = li,. So, without loss of  generality, we can assume that 
(n ,p)  = ( 1 , 2 ) ,  f = l l  on V1 and f = 1 2  on V2. Let W1 and W2 be the closures of  
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Vl and V2 and write (w.l.o.g.): 

V1 = {_~ E ~h: P l ($ )  > 0 . . . . .  P r (a )  > 0 . . . . .  Ps(~_) > 0}, 

V2 : {_a E ~h: PI(_~) > 0 . . . . .  Pr(a_) > 0, Pr+l(00 < 0 . . . . .  Ps(a_) < 0}. 

This allows to derive the following descriptions for W~ and W2: 

Wl = {~ C ~h: PI(_U) _~ 0 . . . . .  Pr(~_) >_ 0 . . . . .  Ps(_a) >_ 0}, 

W2 = {~ E ~h: Pl(_~) -> 0 . . . . .  P~(g) _> 0, Pr+t(_~) _< 0 . . . . .  Ps(u) <__ 0}. 

NOW we consider the polynomial: 

R(x) = ~ Pi(x_). 
i=r+l 

The description of  W as union of  W1 and W2 allows to conclude that inside W an 
equation for W1 is R ( x ) >  0 and the equation for W2 is R ( x ) <  0: 

w1 = {~ E w .  R(~) > 0}, w2 = {~ E W: R(~) < 0}, 

which implies the following description for Wl A W2: 

W1 ["/W2 = {_~ E W : R(_~) = 0}. 

On WtAW2 we have f = l l  =/2  and every zero of  R(x) in W is a zero of  l t ( x ) - / 2 ( x ) .  
So applying Lojasiewicz inequality we obtain the existence of  positive integers t and 
k, and a positive number c E ~ verifying: 

[l~(_~) - I2(_~)1 e _< clR(_~)I(1 + ll~[I2) k V~_E w. 

This allows to define the function: 

vl,2(_~) = l:(a_) + ~/max{0,  cR(oO(1 + ll_~l[ 2)k } 

verifying the desired conditions: 

• for all _~ E W2 we have Vl,2(_~) = l :(g),  
• for all a_ E W1 we have: 

t~l,2(_~ ) ~ /2(_~) -Jr- I11(~) -- /2(~)[ ~-- 11(~_). 

Once all the functions Vn, p have been constructed, it is very easy to check that 

f(_a) = min{max{vn, p(a_): n ~- p, n E N} : p E N} 

and the proof  of  the theorem is obtained. [] 
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