
An elementary characterisation of Krull dimension

Thierry Coquand (∗) Henri Lombardi (†), Marie-Françoise Roy (‡),

April 2004

Abstract

We give an elementary characterisation of Krull dimension for distributive lattices and commu-
tative rings. This follows the following geometrical intuition: an algebraic variety is of dimension
≤ k if and only if each subvariety has a boundary of dimension < k. Since our results hold for
distributive lattices, they hold, by Stone duality [11], for any spectral spaces.
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Boundaries of an element in a distributive lattice

By distributive lattice we mean a lattice with a minimum and a maximum (so that all finite parts have
a supremum and an infimum) which is distributive.

Let L be a distributive lattice. An ideal of L is a subset I ⊆ L such that

0 ∈ I
x, y ∈ I =⇒ x ∨ y ∈ I

x ∈ I, z ∈ L =⇒ x ∧ z ∈ I

The last property can be written (x ∈ I, y ≤ x) ⇒ y ∈ I.
The dual notion is the notion of filter. A filter F is a subset of L such that

1 ∈ F
x, y ∈ F =⇒ x ∧ y ∈ F

x ∈ F, z ∈ L =⇒ x ∨ z ∈ F

A prime ideal is an ideal I such that 1 /∈ I and

x ∧ y ∈ I ⇒ [x ∈ I or y ∈ I]

and dually a prime filter is a filter F such that 0 /∈ F and

x ∨ y ∈ F ⇒ [x ∈ F or y ∈ F ]

Notice that an ideal (resp. a filter) is prime if and only if its complement is a filter (resp. an ideal).
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If x ∈ L we denote by D(x) the set of prime ideals I such that x /∈ I. We have D(0) = ∅ and
D(x)∩D(y) = D(x∧ y). The set of all prime ideals of a distributive lattice L has a natural structure
of topological space, called the spectrum Sp(L) of L. We take for basic open sets the sets D(x), x ∈ L.
It can be shown that, each D(x) is compact, and that the compact open sets of Sp(L) are exactly the
subsets of the form D(x), x ∈ L [11].

The spaces (homeomorphic to spaces) of the form Sp(L) are called spectral spaces and it is possible
to characterise directly these spaces by topological properties [11, 7]. Most topological spaces used
in commutative algebra, Zariski spectrum of a ring, spaces of valuations of a field, . . ., are spectral
spaces.

The set Sp(L) is ordered by inclusion, and the Krull dimension of L is defined as the upper bound
of the length of chains of prime ideals (or equivalently chains of prime filters).

If x ∈ L we define the boundary ideal of x as being the ideal generated by x and the elements y ∈ L
such that x ∧ y = 0. Dually, we define the boundary filter of x as being the filter generated by x and
the elements y ∈ L such that x ∨ y = 1.

Definition 1 The upper boundary of x ∈ L in the distributive lattice L is the distributive lattice L{x}

quotient of L by the boundary ideal of x. Thus it is the lattice L,∧,∨ with the order

a ≤x b ⇐⇒ ∃y ∈ L ( x ∧ y = 0 & a ≤ x ∨ y ∨ b )

When L is implicative the definition becomes a ≤ x ∨ ¬x ∨ b.
By considering the dual lattice, one defines the lower boundary L{x}, which is the distributive lattice

quotient of L by the boundary filter of x. Thus it is the lattice L,∧,∨ with the order

a ≤x b ⇐⇒ ∃y ∈ L ( x ∨ y = 1 & a ∧ x ∧ y ≤ b )

It can be checked that the boundary of the open D(x), viewed as a subspace of Sp(L), is a spectral
space (as a closed set in a spectral space) and corresponds by Stone duality to the distributive lattice
L{x}.

Krull dimension of a distributive lattice

The duality between distributive lattice and spectral spaces relies on classical logic and the axiom
of choice. From a constructive point of view, this duality is seen as a way to develop the theory of
spectral spaces, using distributive lattices as a point-free presentation of these spaces [8]. One is thus
led to look for direct definitions of topological notions in term of distributive lattices, and for instance,
a direct definition of the Krull dimension.

A first constructive definition of Krull dimension was sketched in [1]. This definition was analysed
in the work [6]. The author gave an elementary characterisation of the Krull dimension of a lattice L
in term of the Boolean algebra generated by L. In [3], following the idea in [1], the two first authors
proved the following result, which gives yet another a concrete characterization of Krull dimension.

Theorem 2 Let L be a distributive lattice generated by a subset S and ` a nonnegative integer. The
following are equivalent

(1) L has Krull dimension ≤ `

(2) For all x0, . . . , x` ∈ S there exist a0, . . . , a` ∈ L such that

a0 ∧ x0 ≤ 0 , a1 ∧ x1 ≤ a0 ∨ x0 , . . . , a` ∧ x` ≤ a`−1 ∨ x`−1 , 1 ≤ a` ∨ x`.

In particular a distributive lattice L is of dimension ≤ 0 if and only if L is a Boolean algebra (any
element has a complement).

The goal of this paper is to present a simpler inductive characterisation of Krull dimension, which
provides also a simple proof of the equivalence between (1) and (2) in the previous theorem. This
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inductive characterisation corresponds to the following geometrical intuition: a variety is of dimension
≤ k if and only if any subvariety has a boundary of dimension < k. (the induction begins with
dimension −1 which defines the trivial lattice).

Theorem 3 Let L be a distributive lattice generated by a subset S and ` a nonnegative integer. The
following are equivalent

(1) L has Krull dimension ≤ `

(2) For all x ∈ S the boundary L{x} is of Krull dimension ≤ `− 1.

(3) For all x ∈ S the boundary L{x} is of Krull dimension ≤ `− 1.

Proof.
(1) ⇔ (2): We show first that any maximal filter F of L becomes trivial in L{x}, i.e. it contains 0.
This means that one can find a ∈ F such that a ≤x 0. If x ∈ F this holds since x ≤x 0. If x /∈ F
there exists z ∈ F such that x ∧ z = 0 (since the filter generated by F and x is trivial) and we have
then z ≤x 0. This shows that the Krull dimension of L{x} becomes one less than the one of L (if it is
finite).
Next, we show that if F ′ ⊂ F , F maximal and x ∈ F \ F ′ then F ′ does not become trivial in L{x}

(which shows that dim L{x} is dim L − 1 with a good choice of x). Indeed, we would get otherwise
z ∈ F ′ such that z ∧ x = 0, which is impossible since both z and x are in F .
We finally notice that if F ′ ⊂ F are distinct prime filters and S generates L one can find x ∈ S such
that x ∈ F \ F ′.
(1) ⇔ (3) is a consequence of (1) ⇔ (2) by duality. 2

By Stone duality [11], we get the following result.

Theorem 4 A spectral space X is of Krull dimension ≤ k if and only if any open compact of X has
a boundary of dimension < k.

Since any spectral space can be viewed as the spectrum of a commutative ring, it is natural to
define directly boundaries for commutative rings.

The two boundaries of an element in a commutative ring

Let R be a commutative ring. We write 〈J〉 for the ideal of R generated by the subset J ⊆ R. We write
M(U) for the monoid (a monoid will always be multiplicative) generated by the subset U ⊆ R. Given
a commutative ring R the Zariski lattice Zar(R) has for elements the radicals of finitely generated
ideals. The order relation is the inclusion and we get

√
I ∧

√
J =

√
IJ,

√
I ∨

√
J =

√
I + J.

We shall write ã for
√
〈a〉. We have

ã1 ∨ · · · ∨ ãm =
√
〈a1, . . . , am〉 and ã1 ∧ · · · ∧ ãm = ˜a1 · · · am.

Let U and J be two finite subsets of R, we have∧
u∈U

ũ ≤Zar(R)

∨
a∈J

ã ⇐⇒
∏
u∈U

u ∈
√
〈J〉 ⇐⇒ M(U) ∩ 〈J〉 6= ∅

This describes completely the lattice Zar(R). More precisely ([3]) we have:

Proposition 5 The lattice Zar(R) of a commutative ring R is (up to isomorphism) the lattice gen-
erated by symbols D(x), x ∈ R with the relations

D(0) = 0, D(1) = 1, D(fg) = D(f) ∧D(g), D(f + g) ≤ D(f) ∨D(g).
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The spectrum of the distributive lattice Zar(R) is naturally isomorphic to the Zariski spectrum of
the ring R. So the Krull dimension of a commutative ring R is the same as the Krull dimension of its
Zariski lattice Zar(R).

Definition 6 Let R be a commutative ring and x ∈ R.

(1) The boundary R{x} of x in R is the quotient ring R/I{x} where I{x} = xR + (
√

0 : x).

(2) The boundary R{x} of x in R is the localized ring RS{x} where S{x} = xN(1 + xR).

The next proposition is easy.

Proposition 7 Let L = Zar(R) and x ∈ R. Then L{x̃} is naturally isomorphic to Zar(R{x}) and
L{x̃} is naturally isomorphic to Zar(R{x}).

We get an elementary inductive characterization of Krull dimension of commutative rings. Recall
that a ring R has Krull dimension −1 if and only if it is trivial (i.e., 1R = 0R).

Theorem 8 Let R be a commutative ring and ` ≥ 0 an integer. The following are equivalent

(1) The Krull dimension of R is ≤ `.

(2) For all x ∈ R the Krull dimension of R{x} is ≤ `− 1.

(3) For all x ∈ R the Krull dimension of R{x} is ≤ `− 1.

These equivalences are immediate consequences of Theorem 3 and Proposition 7.

Corollary 9 (cf. [3, 10]) Let ` be a nonnegative integer. The Krull dimension of R is ≤ ` if and
only if for all x0, . . . , x` in R there exists a0, . . . , a` ∈ R and m0, . . . ,m` ∈ N such that

xm0
0 (· · · (xm`

` (1 + a`x`) + · · ·) + a0x0) = 0 (1)

Proof.
Since dimension −1 corresponds to the trivial ring the equivalence for the case ` = 0 is clear.
Assume the equivalence has been established for all integers < ` and all R. We deduce that the
dimension of a localization S−1R is < ` if and only if for all x0, . . . , x`−1 ∈ R there exist a0, . . . , a`−1 ∈
R, s ∈ S and m0, . . . ,m`−1 ∈ N such that

xm0
0 (xm1

1 · · · (xm`−1

`−1 (s + a`−1x`−1) + · · ·+ a1x1) + a0x0) = 0 . (2)

Notice that s replaces 1 in the similar equality (1) with R instead of S−1R. It remains only to replace
s by an arbitrary element in S{x`}, i.e., an element xm`

` (1 + a`x`). 2

The advantage of this definition is, besides its elementary character, to allow simple proofs by in-
duction on the dimension. We can for instance prove directly in this way the following non-Noetherian
version of Bass’ stable range theorem.

Theorem 10 If the dimension of R is < n and 1 = D(a, b1, . . . , bn) there exists x1, . . . , xn such that
1 = D(b1 + ax1, . . . , bn + axn).

Examples
If A = Z and n 6= 0, 1,−1 then Z{n} = Z/nZ and Z{n} = Q. These are two 0-dimensional rings. For
n = 0, 1 or −1 the two boundaries are trivial. Thus the Krull dimension of Z is 1.
Let K be a field contained in an algebraically closed field L, and J be a finitely generated ideal of
K[X1, . . . , Xn] and A = K[X1, . . . , Xn]/J . If V is the algebraic variety corresponding to J in Ln, if
f ∈ A defines the subvariety W of V and if B is the boundary of W in V , defined as the intersection
of W with the Zariski cloture of its complement in V , then the affine variety B corresponds to the
ring A{f}.

Acknowledgments: we thank the referee for carefull rereading and valuable comments.
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