An elementary characterisation of Krull dimension

Thierry Coquand (*) Henri Lombardi (T), Marie-Francoise Roy (),
April 2004

Abstract

We give an elementary characterisation of Krull dimension for distributive lattices and commu-
tative rings. This follows the following geometrical intuition: an algebraic variety is of dimension
< k if and only if each subvariety has a boundary of dimension < k. Since our results hold for
distributive lattices, they hold, by Stone duality [11], for any spectral spaces.
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Boundaries of an element in a distributive lattice

By distributive lattice we mean a lattice with a minimum and a maximum (so that all finite parts have
a supremum and an infimum) which is distributive.
Let L be a distributive lattice. An ideal of L is a subset I C L such that

0el
z,yel — zxVyel
xel, zel = xNzel

The last property can be written (z € I, y < x) =y € I.
The dual notion is the notion of filter. A filter F' is a subset of L such that

leF
r,ye ' = xAyeF
el zelL — zxzVzeFlF

A prime ideal is an ideal I such that 1 ¢ I and
xANyel=[zeloryecl|
and dually a prime filter is a filter F' such that 0 ¢ F' and
xVyeF=[xe€ForyckF|

Notice that an ideal (resp. a filter) is prime if and only if its complement is a filter (resp. an ideal).
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If z € L we denote by D(z) the set of prime ideals I such that x ¢ I. We have D(0) = () and
D(z) N D(y) = D(x Ay). The set of all prime ideals of a distributive lattice L has a natural structure
of topological space, called the spectrum Sp(L) of L. We take for basic open sets the sets D(x), = € L.
It can be shown that, each D(z) is compact, and that the compact open sets of Sp(L) are exactly the
subsets of the form D(x), x € L [11].

The spaces (homeomorphic to spaces) of the form Sp(L) are called spectral spaces and it is possible
to characterise directly these spaces by topological properties [11, 7]. Most topological spaces used
in commutative algebra, Zariski spectrum of a ring, spaces of valuations of a field, ..., are spectral
spaces.

The set Sp(L) is ordered by inclusion, and the Krull dimension of L is defined as the upper bound
of the length of chains of prime ideals (or equivalently chains of prime filters).

If € L we define the boundary ideal of x as being the ideal generated by = and the elements y € L
such that = A y = 0. Dually, we define the boundary filter of x as being the filter generated by x and
the elements y € L such that x vy = 1.

Definition 1 The upper boundary of x € L in the distributive lattice L is the distributive lattice L1}
quotient of L by the boundary ideal of x. Thus it is the lattice L, A,V with the order

a<®b — Jyel (zANy=0 & a<zxzVyVb)

When L is implicative the definition becomes a < x V —x V b.
By considering the dual lattice, one defines the lower boundary L.y, which is the distributive lattice
quotient of L by the boundary filter of x. Thus it is the lattice L, \,NV with the order

a<gb — Jyel (zVy=1 & anzAy<b)

It can be checked that the boundary of the open D(x), viewed as a subspace of Sp(L), is a spectral

space (as a closed set in a spectral space) and corresponds by Stone duality to the distributive lattice
Liz},

Krull dimension of a distributive lattice

The duality between distributive lattice and spectral spaces relies on classical logic and the axiom
of choice. From a constructive point of view, this duality is seen as a way to develop the theory of
spectral spaces, using distributive lattices as a point-free presentation of these spaces [8]. One is thus
led to look for direct definitions of topological notions in term of distributive lattices, and for instance,
a direct definition of the Krull dimension.

A first constructive definition of Krull dimension was sketched in [1]. This definition was analysed
in the work [6]. The author gave an elementary characterisation of the Krull dimension of a lattice L
in term of the Boolean algebra generated by L. In [3], following the idea in [1], the two first authors
proved the following result, which gives yet another a concrete characterization of Krull dimension.

Theorem 2 Let L be a distributive lattice generated by a subset S and ¢ a nonnegative integer. The
following are equivalent

(1) L has Krull dimension < {

(2) For all xg,...,xy € S there exist ay,...,ay € L such that

agANxg <0, agAx1<agVag,. ..., agANxg<ap_ 1V, 1< apVay.

In particular a distributive lattice L is of dimension < 0 if and only if L is a Boolean algebra (any
element has a complement).

The goal of this paper is to present a simpler inductive characterisation of Krull dimension, which
provides also a simple proof of the equivalence between (1) and (2) in the previous theorem. This



inductive characterisation corresponds to the following geometrical intuition: a variety is of dimension
< k if and only if any subvariety has a boundary of dimension < k. (the induction begins with
dimension —1 which defines the trivial lattice).

Theorem 3 Let L be a distributive lattice generated by a subset S and ¢ a nonnegative integer. The
following are equivalent

(1) L has Krull dimension < {
(2) For all z € S the boundary L1*} is of Krull dimension < — 1.

(3) For all x € S the boundary Ly, is of Krull dimension < ¢ — 1.

Proof.

(1) & (2): We show first that any maximal filter F' of L becomes trivial in L{*}, i.e. it contains 0.
This means that one can find a € F such that a <* 0. If 2 € F this holds since z <* 0. If x ¢ F
there exists z € F' such that x A z = 0 (since the filter generated by F' and z is trivial) and we have
then z <® 0. This shows that the Krull dimension of L{*} becomes one less than the one of L (if it is
finite).

Next, we show that if F/ ¢ F, F maximal and z € F \ F’ then F’ does not become trivial in L{*}
(which shows that dim L{*} is dim L — 1 with a good choice of z). Indeed, we would get otherwise
z € F' such that z A x = 0, which is impossible since both z and z are in F.

We finally notice that if F’ C F are distinct prime filters and S generates L one can find z € S such
that x € F'\ F'.

(1) & (3) is a consequence of (1) < (2) by duality. O

By Stone duality [11], we get the following result.

Theorem 4 A spectral space X is of Krull dimension < k if and only if any open compact of X has
a boundary of dimension < k.

Since any spectral space can be viewed as the spectrum of a commutative ring, it is natural to
define directly boundaries for commutative rings.

The two boundaries of an element in a commutative ring

Let R be a commutative ring. We write (J) for the ideal of R generated by the subset J C R. We write
M(U) for the monoid (a monoid will always be multiplicative) generated by the subset U C R. Given
a commutative ring R the Zariski lattice Zar(R) has for elements the radicals of finitely generated
ideals. The order relation is the inclusion and we get

VIANNT =V1J, VIVVI=VI+J.
We shall write a for \/(a). We have

ar V- NVam=+{(a1,...;an) and a; A AGy =ai-: Q.

Let U and J be two finite subsets of R, we have

/\QSZar(R)\/a — HUG\/@ — M(U)m<‘]>7é®

uelU acJ uelU
This describes completely the lattice Zar(R). More precisely ([3]) we have:

Proposition 5 The lattice Zar(R) of a commutative ring R is (up to isomorphism) the lattice gen-
erated by symbols D(x), x € R with the relations

D(0) =0, D1)=1, D(fg)=D(f)AD(g), D(f+g)<D(f)VD(g)



The spectrum of the distributive lattice Zar(R) is naturally isomorphic to the Zariski spectrum of
the ring R. So the Krull dimension of a commutative ring R is the same as the Krull dimension of its
Zariski lattice Zar(R).

Definition 6 Let R be a commutative ring and x € R.
(1) The boundary RY*} of x in R is the quotient ring R/I1*} where I'*} = 2R+ (/0 : ).
(2) The boundary R,y of @ in R is the localized ring Rs,,, where Sz = 2N(1 + zR).
The next proposition is easy.

Proposition 7 Let L = Zar(R) and x € R. Then L®} is naturally isomorphic to Zar(R1*}) and
Lyzy is naturally isomorphic to Zar(Ry,).

We get an elementary inductive characterization of Krull dimension of commutative rings. Recall
that a ring R has Krull dimension —1 if and only if it is trivial (i.e., 1z = Og).

Theorem 8 Let R be a commutative ring and £ > 0 an integer. The following are equivalent

(1) The Krull dimension of R is < /.
(2) For all x € R the Krull dimension of RY*} is < —1.
(3) For all x € R the Krull dimension of Ry is < {—1.
These equivalences are immediate consequences of Theorem 3 and Proposition 7.

Corollary 9 (c¢f. [3, 10]) Let ¢ be a nonnegative integer. The Krull dimension of R is < { if and
only if for all xq,..., x4 in R there exists ag,...,ap € R and mg,...,my € N such that

20 (- (@ (1 + agwg) + ) + aoz0) = 0 1)

Proof.

Since dimension —1 corresponds to the trivial ring the equivalence for the case ¢ = 0 is clear.
Assume the equivalence has been established for all integers < ¢ and all R. We deduce that the
dimension of a localization S™!'R is < ¢ if and only if for all g, ..., z,_1 € R there exist ag,...,ar_1 €
R, s € S and my,...,my_1 € N such that

zg (2P (2T (s 4 apm1ze—1) 4 -+ arxn) + agro) = 0. (2)

Notice that s replaces 1 in the similar equality (1) with R instead of S~!R. It remains only to replace
s by an arbitrary element in Sy, i.e., an element x)" (1 + agxy). O

The advantage of this definition is, besides its elementary character, to allow simple proofs by in-
duction on the dimension. We can for instance prove directly in this way the following non-Noetherian
version of Bass’ stable range theorem.

Theorem 10 If the dimension of R is <mn and 1 = D(a,by,...,b,) there exists x1,...,x, such that
1=D(b1 +ax1,...,by + axy).

Examples

If A=Zand n # 0,1, —1 then Z{"} = Z/nZ and Ziny = Q. These are two O-dimensional rings. For
n = 0,1 or —1 the two boundaries are trivial. Thus the Krull dimension of Z is 1.

Let K be a field contained in an algebraically closed field L, and J be a finitely generated ideal of
K[Xy,...,X,] and A = K[X4,...,X,]/J. If V is the algebraic variety corresponding to J in L", if
f € A defines the subvariety W of V' and if B is the boundary of W in V', defined as the intersection
of W \;vi]%h the Zariski cloture of its complement in V', then the affine variety B corresponds to the
ring A}
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