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Abstract. An element a of a commutative ring R is nilregular if and only if x is nilpotent
whenever ax is nilpotent. More generally, an ideal I of R is nilregular if and only if x
is nilpotent whenever ax is nilpotent for all a ∈ I. We give a direct proof that if R
is Noetherian, then every nilregular ideal contains a nilregular element. In constructive
mathematics, this proof can then be seen as an algorithm to produce nilregular elements
of nilregular ideals whenever R is coherent, Noetherian, and discrete. As an application,
we give a constructive proof of the Eisenbud–Evans–Storch theorem that every algebraic
set in n–dimensional affine space is the intersection of n hypersurfaces.
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1. The nilregular element property

Let R be a commutative ring with unit and N its nilradical, i.e. the ideal consisting
of its nilpotent elements. We define an element a (respectively, an ideal I) of R to be
nilregular if and only if x ∈ N whenever ax ∈ N (respectively, ax ∈ N for all a ∈ I). So
an ideal I is nilregular precisely when the transporter ideal (N : I) = {x ∈ R : xI ⊆ N}
is contained in N . We present a method to find nilregular elements of nilregular ideals
when R is Noetherian. For this, we interpret first the property of being nilregular in a
topological way.

As usual, let D(a) be the set of prime ideals p of R such that a /∈ p, and let D(a1, . . . , an)
stand for the union of D(a1), . . . , D(an). The intersection of D(a) and D(b) is D(ab),
and D(a) is a subset of D(a1, . . . , an) if and only if a belongs to the radical of the ideal
(a1, . . . , an) generated by a1, . . . , an. In particular, D(a) = ∅ precisely when a ∈ N .

Lemma 1.1. We have D(a + b, ab) = D(a, b) for all a, b ∈ R. If, in particular, D(a) and
D(b) are disjoint, then D(a + b) = D(a, b).

Proof. Both a2 = a(a + b)− ab and b2 = (a + b)b− ab belong to (a + b, ab). �

It is well–known that the D(a) with a ∈ R form a basis of opens for the Zariski topology
on the prime spectrum (the set of all prime ideals) of R. It follows that a ∈ R is nilregular
if and only if D(a) is dense for the Zariski topology.

Remark 1.2. D(a1, . . . , an) is dense if and only if (a1, . . . , an) is a nilregular ideal.

Theorem 1.3. Let R be Noetherian, and a1, . . . , an ∈ R. If D(a1, . . . , an) is dense, then
the ideal (a1, . . . , an) contains a nilregular element.

Proof. If D(x) 6= ∅, then there exists i such that D(xai) 6= ∅, because D(a1, . . . , an) is
dense. Hence if the ring is nontrivial, then we can inductively build a sequence b0, b1, . . .
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of elements of R in the following way: b0 is one ai such that D(b0) 6= ∅; if D(b0, . . . , bk) is
not dense, then bk+1 is a multiple of one aj such that D(bk+1) 6= ∅ and D(bk+1) is disjoint
from D(b0, . . . , bk). Since R is Noetherian, this procedure has to stop, and we eventually
find p such that D(b0, . . . , bp) is dense and D(bi) ∩D(bj) = ∅ whenever i 6= j. By Lemma
1.1, we have

D(b0, . . . , bp) = D(b0 + · · ·+ bp)

and b0 + · · ·+ bp is a nilregular element in (a1, . . . , an). �

As in [1] we define the ideal boundary Na of a ∈ R to be the ideal generated by a and
the elements x of R such that ax is nilpotent; in other words, Na = aR + (N : a).

Lemma 1.4. Every ideal boundary is a nilregular ideal.

Proof. Fix a ∈ R, and assume that bx is nilpotent for all b ∈ Na. Then x is nilpotent.
Indeed, ax is nilpotent because a ∈ Na; whence x ∈ Na and thus x2 is nilpotent. �

Corollary 1.5. If R is Noetherian, then every ideal boundary contains a nilregular element.

Throughout this section we could only have required that the topological space Spec(R)
rather than the ring R be Noetherian.

2. Constructive interpretation

We interpret the previous argument in the framework of constructive mathematics [6, 7].
Let L(R) be the lattice of radically finitely generated ideals of R: that is, the radicals of
finitely generated ideals [2]. Following Joyal [5], the lattice L(R), with inclusion as ordering,
can also be defined as the distributive lattice generated by the symbols D(a) with a ∈ R,
and equipped with the relations

D(0) = 0 , D(1) = 1 , D(ab) = D(a) ∧D(b) , D(a + b) ≤ D(a) ∨D(b)

for a, b ∈ A. Writing D(a1, . . . , am) for D(a1) ∨ · · · ∨D(am), it can be shown [2] that

D(b1) ∧ · · · ∧D(bn) ≤ D(a1, . . . , am)

if and only if the monoid generated by b1, . . . , bn meets the ideal generated by a1, . . . , am.
So D(a1, . . . , am) can indeed be identified with the radical of the ideal (a1, . . . , am), and
D (a) = 0 precisely when a is nilpotent.

Lemma 2.1. If R is coherent, Noetherian, and discrete, then one can decide whether a
given element of R is nilpotent.

Proof. Let a ∈ R. Every annihilator (0 : ap) is a finitely generated ideal with (0 : ap) ⊆
(0 : ap+1). Since R is Noetherian, there exists n such that (0 : an) = (0 : an+1). We even
have (0 : an) =

(
0 : an+k

)
for all k. (Indeed, if an+k+1b = 0, then akb annihilates an+1 and

thus also an, so that an+kb = 0.) Hence a is nilpotent if and only if an = 0. �

Corollary 2.2. If R is coherent, Noetherian, and discrete, then equality to 0 is decidable
in L (R).
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We recall that a lattice is a Heyting algebra if and only if one can assign to every pair
(u, v) of elements another element u → v such that u ∧ x ≤ v if and only if x ≤ u → v. In
a Heyting algebra, one writes ¬u for u → 0.

If R is coherent and Noetherian, then L(R) is a Heyting algebra [2]. A direct argument
shows that a ∈ R is nilregular if and only if ¬D(a) = 0.

Remark 2.3. ¬D(a1, . . . , an) = 0 if and only if (a1, . . . , an) is a nilregular ideal.

Lemma 2.4. If R is coherent, Noetherian, and discrete, for given b0, . . . , bk ∈ R we can
decide whether ¬D(b0, . . . , bk) = 0; if indeed ¬D(b0, . . . , bk) 6= 0, then we can compute
bk+1 ∈ R such that D(bk+1) 6= 0 and D(bk+1) ∧D(b0, . . . , bk) = 0.

Proof. Write ¬D(b0, . . . , bk) = D (c1, . . . , cm), and apply Lemma 2.1 successively to the cj.
If cj /∈ N for some j, then bk+1 = cj is as desired. �

Corollary 2.5. If R is coherent, Noetherian and discrete, then we can decide whether an
element b of R is nilregular, and if this is not the case, then we can compute an element
x /∈ N such that bx ∈ N .

In this context, ¬D(b0, . . . , bk) = 0 precisely when D(b0, . . . , bk) is dense. Reasoning as
in the previous section (Theorem 1.3), we can now conclude.

Theorem 2.6. Let R be coherent, Noetherian, and discrete, and a1, . . . , an ∈ R. If
¬D(a1, . . . , an) = 0, then the ideal (a1, . . . , an) contains a nilregular element.

This result seems closely connected to the regular element property proved constructively
in [7]. The hypothesis is a little weaker (we don’t assume the ring to contain an infinite
field), but the statement is a priori different unless the ring is reduced (we use ‘nilregular’
instead of ‘regular’).

In view of Lemma 1.4, Corollary 1.5 can be rephrased as follows.

Corollary 2.7. If R is coherent, Noetherian, and discrete, then every ideal boundary
contains a nilregular element.

In terms of L (R), this means that for every a ∈ R there is s ∈ R with ¬D(s) = 0 and
D(s) ≤ D(a) ∨ ¬D(a); observe that D(Na) = D(a) ∨ ¬D(a).

3. Application

The motivation of this work was to give a constructive proof of the Eisenbud–Evans–
Storch theorem that every algebraic set in n–dimensional affine space is the intersection of
n hypersurfaces [4, 8]. In [1, 2, 3] a constructive approach to the theory of Krull dimension
is given with KdimR ≤ −1 if and only if R is trivial, and KdimR ≤ n + 1 if and only if
Kdim(R/Na) ≤ n for all a ∈ R. This inductive definition of being of Krull dimension ≤ n is
then classically equivalent to the usual definition that there is no strictly increasing chain
of prime ideals of length > n [2, 3].

We say that two rings R1 and R2 have the same Krull dimension if and only if KdimR1 ≤
n is equivalent to KdimR2 ≤ n for every n ≥ −1.
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Lemma 3.1. If I is an ideal of R with I ⊆ N , then R and R/I have the same Krull
dimension.

Proof. For every a ∈ R, the ideal boundary of the residue class of a in R/I is nothing but
Na/I; moreover, R is trivial precisely when R/I is so. �

In particular, the reduction R/N of R has the same Krull dimension as R.

Corollary 3.2. If KdimR ≤ n + 1 and s ∈ R is nilregular, then Kdim(R/sR) ≤ n

Proof. In this case we have Ns = sR + N , and R/ (sR + N) is the reduction of R/sR. �

Lemma 3.3. If R is reduced, then R is von Neumann regular if and only if KdimR ≤ 0.

Proof. By definition KdimR ≤ 0 if and only if for every a there exists x such that a(1−xa) =
0, which means that R is von Neumann regular. �

Corollary 3.4. If R is reduced and KdimR ≤ 0, then every finitely generated ideal of R[X]
is principal. If we assume only KdimR ≤ 0, then every radically finitely generated ideal of
R[X] is radically generated by one element.

Proof. It is a standard argument that if R is von Neumann regular, then every finitely
generated ideal of R[X] is principal. �

We call a ring R strongly discrete if and only if we can decide whether a ∈ I for each
finitely generated ideal I of R and every a ∈ R. Clearly, R is strongly discrete precisely
when R/I is discrete for every finitely generated ideal I of R.

Theorem 3.5. Let R be coherent, Noetherian, and strongly discrete. If KdimR ≤ d,
then for every g1, . . . , gm ∈ R[X] there exists f0, . . . , fd ∈ R[X] such that D(g1, . . . , gm) =
D(f0, . . . , fd).

Proof. We prove this by induction on d. The statement is clear from Corollary 3.4 if d = 0.
Let S be the multiplicative monoid of nilregular elements. Corollary 2.7 shows that the

ring of fractions RS is of Krull dimension ≤ 0. Hence, using Corollary 3.4 again, we can
find f ∈ R[X] such that D(f) = D(g1, . . . , gm) in RS[X]. In R[X] this means that there
exists s ∈ S such that

D(f) ∧D(s) ≤ D(g1, . . . , gm) and D(gi) ∧D(s) ≤ D(f) .

We now set f0 = sf and thus arrive at

D(s) ∧D(g1, . . . , gm) ≤ D(f0) ≤ D(g1, . . . , gm)

in R[X].
Since s ∈ S, we have Kdim(R/sR) ≤ d− 1 by Corollary 3.2. By induction, we can find

h1, . . . , hd such that
D(h1, . . . , hd) = D(g1, . . . , gm)

in (R/sR)[X]. (Induction is possible, because if R is coherent, Noetherian, and strongly
discrete, then so is R/I for every finitely generated ideal I of R [6, III.2].) This means

D(s, h1, . . . , hd) = D(s, g1, . . . , gm)
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in R[X]; whence h
nj

j = ajs +
∑

i cijgi for j = 1, ..., d and suitable integers nj ≥ 1.

For each j ≥ 1, we now set fj = h
nj

j − ajs and get D(fj, s) = D(hj, s) with D(fj) ≤
D(g1, ..., gm). This gives

D(s, f1, ..., fd) = D(s, g1, ..., gm)

and thus D(f0, f1, ..., fd) ≤ D(g1, ..., gm). For each i ≤ m, moreover, D(gi) ≤ D(s, f1, ..., fd)
implies D(gi) ≤ D(sgi, f1, ..., fd); since, in addition, D(sgi) ≤ D(f0), we get D(gi) ≤
D(f0, f1, ..., fd).We finally arrive at D(f0, f1, ..., fd) = D(g1, ..., gm) as desired. �

To prove Theorem 3.5 in this way, by induction on the Krull dimension of R, we apply
Corollary 3.4 not only to R, but also to certain quotient rings of R (for instance, to R/sR
for some nilregular element s). Hence we need to know that all these rings are discrete,
which is guaranteed by the assumption that R be strongly discrete. Note that if R is
coherent, Noetherian, and strongly discrete, then L(R) is discrete [2].

In [2] it is shown, in an elementary and constructive way, that the Krull dimension of
a polynomial ring in n variables over a discrete field is ≤ n. By the constructive version
of Hilbert’s basis theorem [6, VIII.1.5], any such polynomial ring is coherent, Noetherian,
and strongly discrete.

Corollary 3.6. If K is a discrete field and d ≥ 1, then for all g1, . . . , gm ∈ K[X1, . . . , Xd]
there exist f1, . . . , fd ∈ K[X1, . . . , Xd] such that D(g1, . . . , gm) = D(f1, . . . , fd).

Kronecker proved this result with d + 1 polynomials instead of d polynomials [1]. Our
argument, being constructive, can be read as an algorithm that produces f1, . . . , fd for
given g1, . . . , gm.
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