A NILREGULAR ELEMENT PROPERTY

THIERRY COQUAND, HENRI LOMBARDI, PETER SCHUSTER

ABSTRACT. An element a of a commutative ring R is nilregular if and only if x is nilpotent whenever ax is nilpotent. More generally, an ideal I of R is nilregular if and only if xis nilpotent whenever ax is nilpotent for all $a \in I$. We give a direct proof that if Ris Noetherian, then every nilregular ideal contains a nilregular element. In constructive mathematics, this proof can then be seen as an algorithm to produce nilregular elements of nilregular ideals whenever R is coherent, Noetherian, and discrete. As an application, we give a constructive proof of the Eisenbud–Evans–Storch theorem that every algebraic set in n-dimensional affine space is the intersection of n hypersurfaces.

AMS Classification: 03F65 (14M10)

1. The Nilregular element property

Let R be a commutative ring with unit and N its nilradical, i.e. the ideal consisting of its nilpotent elements. We define an element a (respectively, an ideal I) of R to be *nilregular* if and only if $x \in N$ whenever $ax \in N$ (respectively, $ax \in N$ for all $a \in I$). So an ideal I is nilregular precisely when the transporter ideal $(N : I) = \{x \in R : xI \subseteq N\}$ is contained in N. We present a method to find nilregular elements of nilregular ideals when R is Noetherian. For this, we interpret first the property of being nilregular in a topological way.

As usual, let $\mathfrak{D}(a)$ be the set of prime ideals \mathfrak{p} of R such that $a \notin \mathfrak{p}$, and let $\mathfrak{D}(a_1, \ldots, a_n)$ stand for the union of $\mathfrak{D}(a_1), \ldots, \mathfrak{D}(a_n)$. The intersection of $\mathfrak{D}(a)$ and $\mathfrak{D}(b)$ is $\mathfrak{D}(ab)$, and $\mathfrak{D}(a)$ is a subset of $\mathfrak{D}(a_1, \ldots, a_n)$ if and only if a belongs to the radical of the ideal (a_1, \ldots, a_n) generated by a_1, \ldots, a_n . In particular, $\mathfrak{D}(a) = \emptyset$ precisely when $a \in N$.

Lemma 1.1. We have $\mathfrak{D}(a+b,ab) = \mathfrak{D}(a,b)$ for all $a, b \in R$. If, in particular, $\mathfrak{D}(a)$ and $\mathfrak{D}(b)$ are disjoint, then $\mathfrak{D}(a+b) = \mathfrak{D}(a,b)$.

Proof. Both
$$a^2 = a(a+b) - ab$$
 and $b^2 = (a+b)b - ab$ belong to $(a+b,ab)$.

It is well-known that the $\mathfrak{D}(a)$ with $a \in R$ form a basis of opens for the Zariski topology on the prime spectrum (the set of all prime ideals) of R. It follows that $a \in R$ is nilregular if and only if $\mathfrak{D}(a)$ is dense for the Zariski topology.

Remark 1.2. $\mathfrak{D}(a_1,\ldots,a_n)$ is dense if and only if (a_1,\ldots,a_n) is a nilregular ideal.

Theorem 1.3. Let R be Noetherian, and $a_1, \ldots, a_n \in R$. If $\mathfrak{D}(a_1, \ldots, a_n)$ is dense, then the ideal (a_1, \ldots, a_n) contains a nilregular element.

Proof. If $\mathfrak{D}(x) \neq \emptyset$, then there exists *i* such that $\mathfrak{D}(xa_i) \neq \emptyset$, because $\mathfrak{D}(a_1, \ldots, a_n)$ is dense. Hence if the ring is nontrivial, then we can inductively build a sequence b_0, b_1, \ldots

of elements of R in the following way: b_0 is one a_i such that $\mathfrak{D}(b_0) \neq \emptyset$; if $\mathfrak{D}(b_0, \ldots, b_k)$ is not dense, then b_{k+1} is a multiple of one a_j such that $\mathfrak{D}(b_{k+1}) \neq \emptyset$ and $\mathfrak{D}(b_{k+1})$ is disjoint from $\mathfrak{D}(b_0, \ldots, b_k)$. Since R is Noetherian, this procedure has to stop, and we eventually find p such that $\mathfrak{D}(b_0, \ldots, b_p)$ is dense and $\mathfrak{D}(b_i) \cap \mathfrak{D}(b_j) = \emptyset$ whenever $i \neq j$. By Lemma 1.1, we have

$$\mathfrak{D}(b_0,\ldots,b_p) = \mathfrak{D}(b_0+\cdots+b_p)$$

and $b_0 + \cdots + b_p$ is a nilregular element in (a_1, \ldots, a_n) .

As in [1] we define the *ideal boundary* N_a of $a \in R$ to be the ideal generated by a and the elements x of R such that ax is nilpotent; in other words, $N_a = aR + (N : a)$.

Lemma 1.4. Every ideal boundary is a nilregular ideal.

Proof. Fix $a \in R$, and assume that bx is nilpotent for all $b \in N_a$. Then x is nilpotent. Indeed, ax is nilpotent because $a \in N_a$; whence $x \in N_a$ and thus x^2 is nilpotent. \Box

Corollary 1.5. If R is Noetherian, then every ideal boundary contains a nilregular element.

Throughout this section we could only have required that the topological space Spec(R) rather than the ring R be Noetherian.

2. Constructive interpretation

We interpret the previous argument in the framework of constructive mathematics [6, 7]. Let L(R) be the lattice of *radically finitely generated* ideals of R: that is, the radicals of finitely generated ideals [2]. Following Joyal [5], the lattice L(R), with inclusion as ordering, can also be defined as the distributive lattice generated by the symbols D(a) with $a \in R$, and equipped with the relations

D(0) = 0, D(1) = 1, $D(ab) = D(a) \land D(b)$, $D(a+b) \le D(a) \lor D(b)$

for $a, b \in A$. Writing $D(a_1, \ldots, a_m)$ for $D(a_1) \vee \cdots \vee D(a_m)$, it can be shown [2] that

$$D(b_1) \wedge \cdots \wedge D(b_n) \leq D(a_1, \dots, a_m)$$

if and only if the monoid generated by b_1, \ldots, b_n meets the ideal generated by a_1, \ldots, a_m . So $D(a_1, \ldots, a_m)$ can indeed be identified with the radical of the ideal (a_1, \ldots, a_m) , and D(a) = 0 precisely when a is nilpotent.

Lemma 2.1. If R is coherent, Noetherian, and discrete, then one can decide whether a given element of R is nilpotent.

Proof. Let $a \in R$. Every annihilator $(0:a^p)$ is a finitely generated ideal with $(0:a^p) \subseteq (0:a^{p+1})$. Since R is Noetherian, there exists n such that $(0:a^n) = (0:a^{n+1})$. We even have $(0:a^n) = (0:a^{n+k})$ for all k. (Indeed, if $a^{n+k+1}b = 0$, then a^kb annihilates a^{n+1} and thus also a^n , so that $a^{n+k}b = 0$.) Hence a is nilpotent if and only if $a^n = 0$.

Corollary 2.2. If R is coherent, Noetherian, and discrete, then equality to 0 is decidable in L(R).

We recall that a lattice is a *Heyting algebra* if and only if one can assign to every pair (u, v) of elements another element $u \to v$ such that $u \wedge x \leq v$ if and only if $x \leq u \to v$. In a Heyting algebra, one writes $\neg u$ for $u \to 0$.

If R is coherent and Noetherian, then L(R) is a Heyting algebra [2]. A direct argument shows that $a \in R$ is nilregular if and only if $\neg D(a) = 0$.

Remark 2.3. $\neg D(a_1, \ldots, a_n) = 0$ if and only if (a_1, \ldots, a_n) is a nilregular ideal.

Lemma 2.4. If R is coherent, Noetherian, and discrete, for given $b_0, \ldots, b_k \in R$ we can decide whether $\neg D(b_0, \ldots, b_k) = 0$; if indeed $\neg D(b_0, \ldots, b_k) \neq 0$, then we can compute $b_{k+1} \in R$ such that $D(b_{k+1}) \neq 0$ and $D(b_{k+1}) \wedge D(b_0, \ldots, b_k) = 0$.

Proof. Write $\neg D(b_0, \ldots, b_k) = D(c_1, \ldots, c_m)$, and apply Lemma 2.1 successively to the c_j . If $c_j \notin N$ for some j, then $b_{k+1} = c_j$ is as desired.

Corollary 2.5. If R is coherent, Noetherian and discrete, then we can decide whether an element b of R is nilregular, and if this is not the case, then we can compute an element $x \notin N$ such that $bx \in N$.

In this context, $\neg D(b_0, \ldots, b_k) = 0$ precisely when $D(b_0, \ldots, b_k)$ is dense. Reasoning as in the previous section (Theorem 1.3), we can now conclude.

Theorem 2.6. Let R be coherent, Noetherian, and discrete, and $a_1, \ldots, a_n \in R$. If $\neg D(a_1, \ldots, a_n) = 0$, then the ideal (a_1, \ldots, a_n) contains a nilregular element.

This result seems closely connected to the regular element property proved constructively in [7]. The hypothesis is a little weaker (we don't assume the ring to contain an infinite field), but the statement is a priori different unless the ring is reduced (we use 'nilregular' instead of 'regular').

In view of Lemma 1.4, Corollary 1.5 can be rephrased as follows.

Corollary 2.7. If R is coherent, Noetherian, and discrete, then every ideal boundary contains a nilregular element.

In terms of L(R), this means that for every $a \in R$ there is $s \in R$ with $\neg D(s) = 0$ and $D(s) \leq D(a) \lor \neg D(a)$; observe that $D(N_a) = D(a) \lor \neg D(a)$.

3. Application

The motivation of this work was to give a constructive proof of the Eisenbud-Evans-Storch theorem that every algebraic set in *n*-dimensional affine space is the intersection of *n* hypersurfaces [4, 8]. In [1, 2, 3] a constructive approach to the theory of Krull dimension is given with $\operatorname{Kdim} R \leq -1$ if and only if *R* is trivial, and $\operatorname{Kdim} R \leq n + 1$ if and only if $\operatorname{Kdim}(R/N_a) \leq n$ for all $a \in R$. This inductive definition of being of Krull dimension $\leq n$ is then classically equivalent to the usual definition that there is no strictly increasing chain of prime ideals of length > n [2, 3].

We say that two rings R_1 and R_2 have the same Krull dimension if and only if $\operatorname{\mathsf{Kdim}} R_1 \leq n$ is equivalent to $\operatorname{\mathsf{Kdim}} R_2 \leq n$ for every $n \geq -1$.

Lemma 3.1. If I is an ideal of R with $I \subseteq N$, then R and R/I have the same Krull dimension.

Proof. For every $a \in R$, the ideal boundary of the residue class of a in R/I is nothing but N_a/I ; moreover, R is trivial precisely when R/I is so.

In particular, the *reduction* R/N of R has the same Krull dimension as R.

Corollary 3.2. If $\operatorname{Kdim} R \leq n+1$ and $s \in R$ is nilregular, then $\operatorname{Kdim}(R/sR) \leq n$

Proof. In this case we have $N_s = sR + N$, and R/(sR + N) is the reduction of R/sR. \Box

Lemma 3.3. If R is reduced, then R is von Neumann regular if and only if $Kdim R \leq 0$.

Proof. By definition $\mathsf{Kdim} R \leq 0$ if and only if for every *a* there exists *x* such that a(1-xa) = 0, which means that *R* is von Neumann regular.

Corollary 3.4. If R is reduced and $\operatorname{Kdim} R \leq 0$, then every finitely generated ideal of R[X] is principal. If we assume only $\operatorname{Kdim} R \leq 0$, then every radically finitely generated ideal of R[X] is radically generated by one element.

Proof. It is a standard argument that if R is von Neumann regular, then every finitely generated ideal of R[X] is principal.

We call a ring R strongly discrete if and only if we can decide whether $a \in I$ for each finitely generated ideal I of R and every $a \in R$. Clearly, R is strongly discrete precisely when R/I is discrete for every finitely generated ideal I of R.

Theorem 3.5. Let R be coherent, Noetherian, and strongly discrete. If $\operatorname{Kdim} R \leq d$, then for every $g_1, \ldots, g_m \in R[X]$ there exists $f_0, \ldots, f_d \in R[X]$ such that $D(g_1, \ldots, g_m) = D(f_0, \ldots, f_d)$.

Proof. We prove this by induction on d. The statement is clear from Corollary 3.4 if d = 0.

Let S be the multiplicative monoid of nilregular elements. Corollary 2.7 shows that the ring of fractions R_S is of Krull dimension ≤ 0 . Hence, using Corollary 3.4 again, we can find $f \in R[X]$ such that $D(f) = D(g_1, \ldots, g_m)$ in $R_S[X]$. In R[X] this means that there exists $s \in S$ such that

$$D(f) \wedge D(s) \le D(g_1, \dots, g_m)$$
 and $D(g_i) \wedge D(s) \le D(f)$.

We now set $f_0 = sf$ and thus arrive at

$$D(s) \wedge D(g_1, \dots, g_m) \le D(f_0) \le D(g_1, \dots, g_m)$$

in R[X].

Since $s \in S$, we have $\mathsf{Kdim}(R/sR) \leq d-1$ by Corollary 3.2. By induction, we can find h_1, \ldots, h_d such that

$$D(h_1,\ldots,h_d)=D(g_1,\ldots,g_m)$$

in (R/sR)[X]. (Induction is possible, because if R is coherent, Noetherian, and strongly discrete, then so is R/I for every finitely generated ideal I of R [6, III.2].) This means

$$D(s, h_1, \dots, h_d) = D(s, g_1, \dots, g_m)$$

in R[X]; whence $h_j^{n_j} = a_j s + \sum_i c_{ij} g_i$ for j = 1, ..., d and suitable integers $n_j \ge 1$.

For each $j \ge 1$, we now set $f_j = h_j^{n_j} - a_j s$ and get $D(f_j, s) = D(h_j, s)$ with $D(f_j) \le D(g_1, ..., g_m)$. This gives

$$D(s, f_1, ..., f_d) = D(s, g_1, ..., g_m)$$

and thus $D(f_0, f_1, ..., f_d) \leq D(g_1, ..., g_m)$. For each $i \leq m$, moreover, $D(g_i) \leq D(s, f_1, ..., f_d)$ implies $D(g_i) \leq D(sg_i, f_1, ..., f_d)$; since, in addition, $D(sg_i) \leq D(f_0)$, we get $D(g_i) \leq D(f_0, f_1, ..., f_d)$. We finally arrive at $D(f_0, f_1, ..., f_d) = D(g_1, ..., g_m)$ as desired. \Box

To prove Theorem 3.5 in this way, by induction on the Krull dimension of R, we apply Corollary 3.4 not only to R, but also to certain quotient rings of R (for instance, to R/sRfor some nilregular element s). Hence we need to know that *all* these rings are discrete, which is guaranteed by the assumption that R be *strongly* discrete. Note that if R is coherent, Noetherian, and strongly discrete, then L(R) is discrete [2].

In [2] it is shown, in an elementary and constructive way, that the Krull dimension of a polynomial ring in n variables over a discrete field is $\leq n$. By the constructive version of Hilbert's basis theorem [6, VIII.1.5], any such polynomial ring is coherent, Noetherian, and strongly discrete.

Corollary 3.6. If K is a discrete field and $d \ge 1$, then for all $g_1, \ldots, g_m \in K[X_1, \ldots, X_d]$ there exist $f_1, \ldots, f_d \in K[X_1, \ldots, X_d]$ such that $D(g_1, \ldots, g_m) = D(f_1, \ldots, f_d)$.

Kronecker proved this result with d + 1 polynomials instead of d polynomials [1]. Our argument, being constructive, can be read as an algorithm that produces f_1, \ldots, f_d for given g_1, \ldots, g_m .

References

- Th. Coquand. Sur un théorème de Kronecker concernant les variétés algébriques C. R. Acad. Sci. Paris, Ser. I, 338 (2004), 291–294.
- [2] Th. Coquand and H. Lombardi. Hidden constructions in abstract algebra (3): Krull dimension of distributive lattices and commutative rings. In: M. Fontana, S.–E. Kabbaj, S. Wiegand, eds., Commutative Ring Theory and Applications. Lect. Notes Pure Appl. Math. 131, Dekker, New York (2002), 477–499.
- [3] Th. Coquand, H. Lombardi, and M.-F. Roy. An elementary characterisation of Krull dimension. In: L. Crosilla, P. Schuster, eds., From Sets and Types to Topology and Analysis. Oxford University Press, forthcoming.
- [4] D. Eisenbud and E. G. Evans, Jr. Every algebraic set in n-space is the intersection of n hypersurfaces. Invent. Math. 19 (1973), 107–112.
- [5] A. Joyal. Le théorème de Chevalley–Tarski. Cahiers Topol. Géom. Différ. Catég. 16 (1975), 256–258.
- [6] R. Mines, F. Richman, W. Ruitenburg. A Course in Constructive Algebra. Springer, New York (1987).
- [7] F. Richman. The regular element property. Proc. Amer. Math. Soc. 126, no. 7 (1998), 2123–2129.
- [8] U. Storch. Bemerkung zu einem Satz von M. Kneser. Arch. Math. (Basel) 23 (1972), 403–404.