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ABSTRACT. An element a of a commutative ring R is nilregular if and only if  is nilpotent
whenever az is nilpotent. More generally, an ideal I of R is nilregular if and only if x
is nilpotent whenever ax is nilpotent for all a € I. We give a direct proof that if R
is Noetherian, then every nilregular ideal contains a nilregular element. In constructive
mathematics, this proof can then be seen as an algorithm to produce nilregular elements
of nilregular ideals whenever R is coherent, Noetherian, and discrete. As an application,
we give a constructive proof of the Eisenbud—Evans—Storch theorem that every algebraic
set in n—dimensional affine space is the intersection of n hypersurfaces.
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1. THE NILREGULAR ELEMENT PROPERTY

Let R be a commutative ring with unit and N its nilradical, i.e. the ideal consisting
of its nilpotent elements. We define an element a (respectively, an ideal I) of R to be
nilregular if and only if z € N whenever ax € N (respectively, ax € N for all a € I). So
an ideal I is nilregular precisely when the transporter ideal (N : I) = {x € R: 2l C N}
is contained in N. We present a method to find nilregular elements of nilregular ideals
when R is Noetherian. For this, we interpret first the property of being nilregular in a
topological way.

As usual, let ©(a) be the set of prime ideals p of R such that a ¢ p, and let ®(ay,...,a,)
stand for the union of D(ay), ..., D(a,). The intersection of D(a) and D(b) is D(ab),
and ®(a) is a subset of ®(ay,...,a,) if and only if a belongs to the radical of the ideal
(a1,...,a,) generated by ay,...,a,. In particular, ®(a) = () precisely when a € N.

Lemma 1.1. We have ©(a + b, ab) = D(a,b) for all a,b € R. If, in particular, ®(a) and
D(b) are disjoint, then D(a + b) = D(a,b).
Proof. Both a? = a(a + b) — ab and b* = (a + b)b — ab belong to (a + b, ab). d

It is well-known that the ®(a) with a € R form a basis of opens for the Zariski topology
on the prime spectrum (the set of all prime ideals) of R. It follows that a € R is nilregular
if and only if ®(a) is dense for the Zariski topology.

Remark 1.2. ©(ay,...,a,) is dense if and only if (a1, ..., a,) is a nilreqular ideal.
Theorem 1.3. Let R be Noetherian, and ay,...,a, € R. If ®(aq,...,a,) is dense, then
the ideal (ay,...,a,) contains a nilregular element.

Proof. If ©(x) # ), then there exists i such that D (za;) # 0, because D(ay,...,a,) is

dense. Hence if the ring is nontrivial, then we can inductively build a sequence by, by, ...
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of elements of R in the following way: by is one a; such that D (by) # 0; if D(bo, ..., by) is
not dense, then by, is a multiple of one a; such that D (bx41) # 0 and D(bg1) is disjoint
from D (bg,...,bx). Since R is Noetherian, this procedure has to stop, and we eventually
find p such that ©(by, ...,b,) is dense and D(b;) N D(b;) = @ whenever i # j. By Lemma
1.1, we have

D(bg,...,bp) =D(bo+---+by)
and by + - - - + b, is a nilregular element in (a4, ..., a,). O

As in [1] we define the ideal boundary N, of a € R to be the ideal generated by a and
the elements = of R such that ax is nilpotent; in other words, N, = aR + (N : a).

Lemma 1.4. Fvery ideal boundary is a nilreqular ideal.

Proof. Fix a € R, and assume that bz is nilpotent for all b € N,. Then x is nilpotent.
Indeed, az is nilpotent because a € N,; whence x € N, and thus 22 is nilpotent. [l

Corollary 1.5. If R is Noetherian, then every ideal boundary contains a nilreqular element.

Throughout this section we could only have required that the topological space Spec(R)
rather than the ring R be Noetherian.

2. CONSTRUCTIVE INTERPRETATION

We interpret the previous argument in the framework of constructive mathematics [6, 7].
Let L(R) be the lattice of radically finitely generated ideals of R: that is, the radicals of
finitely generated ideals [2]. Following Joyal [5], the lattice L(R), with inclusion as ordering,
can also be defined as the distributive lattice generated by the symbols D(a) with a € R,
and equipped with the relations

D0)=0, D(1)=1, D(ab)=D(a)AD(), D(a+b)<D(a)V D()
for a,b € A. Writing D(ay, ..., ay) for D(a;) V ---V D(ay,), it can be shown [2] that
D(bl)/\/\D(bN) S D(ala"'7am)

if and only if the monoid generated by by, ..., b, meets the ideal generated by aq,.. ., ap,.
So D(ay,...,a,) can indeed be identified with the radical of the ideal (a4, ...,a,), and
D (a) = 0 precisely when a is nilpotent.

Lemma 2.1. If R is coherent, Noetherian, and discrete, then one can decide whether a
given element of R is nilpotent.

Proof. Let a € R. Every annihilator (0 : a?) is a finitely generated ideal with (0 : a?) C
(0 : a?™!). Since R is Noetherian, there exists n such that (0:a") = (0: a"™). We even
have (0 : a™) = (0 : a™™*) for all k. (Indeed, if a"*'b = 0, then a*b annihilates a"™' and

thus also a”, so that a"**b = 0.) Hence a is nilpotent if and only if a® = 0. U

Corollary 2.2. If R is coherent, Noetherian, and discrete, then equality to 0 is decidable
in L (R).
2



We recall that a lattice is a Heyting algebra if and only if one can assign to every pair
(u,v) of elements another element u — v such that u Az < v if and only if z <u — v. In
a Heyting algebra, one writes —u for u — 0.

If R is coherent and Noetherian, then L(R) is a Heyting algebra [2]. A direct argument
shows that a € R is nilregular if and only if =D(a) = 0.

Remark 2.3. =D(ay,...,a,) =0 if and only if (a1, ..., a,) is a nilregular ideal.

Lemma 2.4. If R is coherent, Noetherian, and discrete, for given by, ..., by € R we can
decide whether = D(bg,...,bx) = 0; if indeed = D(by,...,b;) # 0, then we can compute
ber1 € R such that D(bgi1) # 0 and D(bgy1) A D(by, ..., bx) = 0.

Proof. Write =D(by,...,b;) = D (c1,...,¢n), and apply Lemma 2.1 successively to the ¢;.
If ¢; ¢ N for some j, then by = ¢; is as desired. U

Corollary 2.5. If R is coherent, Noetherian and discrete, then we can decide whether an
element b of R is nilregular, and if this is not the case, then we can compute an element
x & N such that bx € N.

In this context, =D (b, ...,bx) = 0 precisely when D(by, ..., b;) is dense. Reasoning as
in the previous section (Theorem 1.3), we can now conclude.

Theorem 2.6. Let R be coherent, Noetherian, and discrete, and aq,...,a, € R. If
—D(ay,...,a,) =0, then the ideal (aq,...,a,) contains a nilreqular element.

This result seems closely connected to the regular element property proved constructively
in [7]. The hypothesis is a little weaker (we don’t assume the ring to contain an infinite
field), but the statement is a priori different unless the ring is reduced (we use ‘nilregular’
instead of ‘regular’).

In view of Lemma 1.4, Corollary 1.5 can be rephrased as follows.

Corollary 2.7. If R is coherent, Noetherian, and discrete, then every ideal boundary
contains a nilreqular element.

In terms of L (R), this means that for every a € R there is s € R with =D(s) = 0 and
D(s) < D(a)V =D(a); observe that D(N,) = D(a) V =D(a).

3. APPLICATION

The motivation of this work was to give a constructive proof of the Eisenbud—-Evans—
Storch theorem that every algebraic set in n—dimensional affine space is the intersection of
n hypersurfaces [4, 8]. In [1, 2, 3] a constructive approach to the theory of Krull dimension
is given with KdimR < —1 if and only if R is trivial, and KdimR < n + 1 if and only if
Kdim(R/N,) < n for all @ € R. This inductive definition of being of Krull dimension < n is
then classically equivalent to the usual definition that there is no strictly increasing chain
of prime ideals of length > n [2, 3].

We say that two rings Ry and Ry have the same Krull dimension if and only if KdimR; <

n is equivalent to KdimRy; < n for every n > —1.
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Lemma 3.1. If I is an ideal of R with I C N, then R and R/I have the same Krull
dimension.

Proof. For every a € R, the ideal boundary of the residue class of a in R/I is nothing but
N,/I; moreover, R is trivial precisely when R/I is so. O

In particular, the reduction R/N of R has the same Krull dimension as R.

Corollary 3.2. If KdimR < n+ 1 and s € R is nilregular, then Kdim(R/sR) <n

Proof. In this case we have Ny = sR+ N, and R/ (sR + N) is the reduction of R/sR. [
Lemma 3.3. If R is reduced, then R is von Neumann reqular if and only if KdimR < 0.

Proof. By definition KdimR < 0 if and only if for every a there exists x such that a(1—xa) =
0, which means that R is von Neumann regular. U

Corollary 3.4. If R is reduced and KdimR < 0, then every finitely generated ideal of R[X]
1s principal. If we assume only KdimR < 0, then every radically finitely generated ideal of
R[X] is radically generated by one element.

Proof. 1t is a standard argument that if R is von Neumann regular, then every finitely
generated ideal of R[X] is principal. O

We call a ring R strongly discrete if and only if we can decide whether a € I for each
finitely generated ideal I of R and every a € R. Clearly, R is strongly discrete precisely
when R/I is discrete for every finitely generated ideal I of R.

Theorem 3.5. Let R be coherent, Noetherian, and strongly discrete. If KdimR < d,
then for every g1, ..., gm € R[X] there exists fy,..., fa € R[X]| such that D(g1,...,Gm) =

D(foa"'afd)'

Proof. We prove this by induction on d. The statement is clear from Corollary 3.4 if d = 0.

Let S be the multiplicative monoid of nilregular elements. Corollary 2.7 shows that the
ring of fractions Rg is of Krull dimension < 0. Hence, using Corollary 3.4 again, we can
find f € R[X] such that D(f) = D(g1,...,gm) in Rs[X]. In R[X] this means that there
exists s € S such that

D(f)AND(s) < D(g1,...,9m) and D(g;) AN D(s) < D(f).
We now set fy = sf and thus arrive at

D(s) AD(g1, ..., 9m) < D(fo) < D(g1,- .-, gm)
in R[X].
Since s € S, we have Kdim(R/sR) < d — 1 by Corollary 3.2. By induction, we can find
hi,..., hg such that
D(hy, ..., ha) = D(g1;- - -, gm)
in (R/sR)[X]. (Induction is possible, because if R is coherent, Noetherian, and strongly
discrete, then so is R/I for every finitely generated ideal I of R [6, I11.2].) This means

D(s,h1,...,ha) = D(S, g1, -, Gm)
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in R[X]; whence h}’ = ajs + 3, ¢;;g; for j =1, ...,d and suitable integers n; > 1.
For each j > 1, we now set f; = h;’ — a;s and get D(f;,s) = D(h;,s) with D(f;) <
D(g1, ..., gm). This gives
D(s, fi,.s fa) = D(S, g1, Gm)
and thus D(fo, f1, .., fa) < D(g1,---, gm)- For each i < m, moreover, D(g;) < D(s, f1, ..., [4)
implies D(g;) < D(sg;, fi,..., fa); since, in addition, D(sg;) < D(fo), we get D(g;) <
D(fo, f1, -, f2)-We finally arrive at D(fy, f1, ..., fa) = D(g1, ..., gm) as desired. O

To prove Theorem 3.5 in this way, by induction on the Krull dimension of R, we apply
Corollary 3.4 not only to R, but also to certain quotient rings of R (for instance, to R/sR
for some nilregular element s). Hence we need to know that all these rings are discrete,
which is guaranteed by the assumption that R be strongly discrete. Note that if R is
coherent, Noetherian, and strongly discrete, then L(R) is discrete [2].

In [2] it is shown, in an elementary and constructive way, that the Krull dimension of
a polynomial ring in n variables over a discrete field is < n. By the constructive version
of Hilbert’s basis theorem [6, VIIL.1.5], any such polynomial ring is coherent, Noetherian,
and strongly discrete.

Corollary 3.6. If K is a discrete field and d > 1, then for all gy, ..., gm € K[X1,..., X4
there exist fi,..., fqa € K[X1,..., X4| such that D(g1,...,9m) = D(f1,..., fa)-

Kronecker proved this result with d + 1 polynomials instead of d polynomials [1]. Our
argument, being constructive, can be read as an algorithm that produces fi,..., fq for
given gi, ..., gm.
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