Curves and coherent Prüfer rings

June 22, 2009

Introduction

Usual definitions of Dedekind domain are not well suited for an algorithmic treatment. Indeed, the notion of Noetherian rings is subtle from a constructive point of view, and to be able to get prime ideals involve strong hypotheses. For instance, if \(k \) is a field, even given explicitly, there is in general no method to factorize polynomials in \(k[X] \).

The work \([2]\) analyses the notion of Dedekind domain from a constructive point of view. A first good constructive approximation of the notion of Dedekind domain is the notion of coherent Prüfer ring. We recall the required definitions. Classically, a ring \(R \) is arithmetical iff any localisation \(R_p \) at any maximal ideal \(p \) of \(R \) is a valuation ring, i.e. such that the divisibility relation is linear. A ring \(R \) is arithmetical iff its lattice of ideal is distributive iff for any pair of elements \(x, y \) we can find \(u, v, w \) such that \(xv = yu \) and \(x(1 - u) = yw \). Yet another equivalent definition, which can be seen as a formal version of the classical definition is that for any pair of elements \(x, y \) we can find a covering \(D(w_1), \ldots, D(w_n) \) of the Zariski spectrum of \(R \) such that \(x \) divides \(y \) or \(y \) divides \(x \) in each localisation \(R_{w_i} \). We say that a ring is a Prüfer ring iff all its ideal are flat iff it is arithmetical and reduced (if \(x^2 = 0 \) then \(x = 0 \)). One can then show that a Prüfer ring is coherent (i.e. any finitely generated ideal is finitely presented) iff it is a pp-ring (i.e. the annihilator of any element is generated by an idempotent)\(^2\). In particular any domain which is arithmetical is a coherent Prüfer ring. However to assume the ring to be integral is too strong constructively since we cannot decide irreducibility in general.

The goal of this paper is to show, in constructive mathematics, that if \(k \) is a discrete field and \(f \) an arbitrary polynomial in \(k[x, y] \) then the localisation \(R_{f_y} \) is always a coherent Prüfer ring\(^3\), where \(R \) denotes the ring \(k[x, y] \) quotiented by \(f \). An important corollary is that \(R \) is a coherent Prüfer ring whenever \(1 = \langle f, fx, fy \rangle \).

We first give a simple argument in the case where \(k \) is algebraically closed and \(f \) is irreducible. As a preliminary to the general case, we present after a generalisation of the notion of Hasse-Schmidt derivatives, which has an interest on its own. We then explain what happens in general, and conclude with a magma program which follows this argument and some examples.

1 The case where \(k \) is algebraically closed and \(f \) irreducible

If \(f \) is irreducible then \(R \) is a domain. We assume \(f_y \neq 0 \). In this case we show that \(R_{f_y} \) is a Prüfer domain by showing that any localisation \(R_p \) is a valuation ring, where \(p \) is a maximal ideal not containing \(f_y \).

\(^1\)This notion is particularly interesting logically since it is first-order.

\(^2\)Coherent Prüfer rings are also called semihereditary rings. Since a pp-ring is reduced, a ring is a coherent Prüfer ring iff it is arithmetical and a pp-ring.

\(^3\)Using the work \([1]\), it would be possible to show also that this ring is of Krull dimension \(\leq 1 \).
Since \(k \) is algebraically closed, a maximal ideal \(p \) of \(R \) is on the form \(p = \langle x - a, y - b \rangle \) where \(a, b \) are in \(k \) such that \(f(a, b) = 0 \). If \(f_y \) is not in \(p \) this means that we have furthermore \(f_y(a, b) \neq 0 \). We simply follow the usual proof that \(R_p \) is a discrete valuation ring with \(x - a \) as uniformising parameter: we show that any nonzero element \(g \) in \(R \) can be written \(w \cdot (x - a)^m \) with \(w \) invertible in \(R_p \) and \(m \in \mathbb{N} \) (\(m \) is the “valuation” of \(g \) at \(p \)).

For analysing this, we write in \(k[x, y] \)
\[
f - f(a, b) = (x - a)u - (y - b)v
\]
with \(u \) and \(v \) in \(k[x, y] \). We have then \(v(a, b) = -f_y(a, b) \neq 0 \) (so, \(v \) is invertible in \(R_p \)) and, in \(R \)
\[
0 = (x - a)u - (y - b)v
\]
Similarly, for an arbitrary element \(g \) in \(k[x, y] \) we can write
\[
g = g(a, b) + (x - a)p - (y - b)q
\]
and hence in \(R \)
\[
v g = v g(a, b) + (x - a)r_1
\]
with \(r_1 = pv - qu \). Doing the same operation with \(r_1 \) instead of \(g \) we get similarly
\[
v^2 g = v^2 g(a, b) + (x - a)v g_1 + (x - a)^2 r_2
\]
with \(g_1 = r_1(a, b) \). In general, we have an equality
\[
v^n g = v^n g(a, b) + (x - a)v^{n - 1} g_1 + \ldots + (x - a)^{n - 1} v g_{n - 1} + (x - a)^n r_n
\]
and we have \(g_n = r_n(a, b) \) and it is natural to write \(g_0 = g(a, b) \).

If \(g_0 \neq 0 \) then \(g \) is invertible in \(R_p \). Since \(\deg_y(f) > 0 \) and \(f \) is irreducible in \(k(y)[x] \), if \(g \neq 0 \) in \(R \) the resultant \(d = \text{Res}_y(f, g) \) in \(k[x] \) is nonzero and we can write \(d = \sigma f + \theta g \) in \(k[x, y] \). So \(d = \theta g \) in \(R \). If \(g_0 = \ldots = g_{n - 1} = 0 \) we have in \(R \)
\[
(\ast) \\
v^n d = (x - a)^n r_n \theta
\]
Since \(f \) does not divide \(x - a \), we have that \(x - a \) is regular in \(R \). Note that \((x - a) \notin p \) and \(k \cap p R_p = \{0\} \). We write \(d = u_0 + (x - a)u_1 + \ldots \), with \(u_0, u_1, \ldots \) in \(k \). If \(n > 0 \) then \((x - a) \) divides \(d \) in \(R_p \), so it divides \(u_0 \), so \(u_0 = 0 \). If \(n > 1 \) then \((x - a)^2 \) divides \(d = u_1(x - a) + \ldots \) in \(R_p \), so it divides \(u_1(x - a) \). Since \(x - a \) is regular in \(R \), \((x - a) \) divides \(u_1 \), so \(u_1 = 0 \). Similarly the equality \((\ast) \) implies that \(u_i = 0 \) for \(i < n \) and hence \((x - a)^n \) divides \(d \) in \(k[x] \). It follows that there exists an integer \(m \leq \text{the} \ x\text{-valuation of} \ d \in k[x], \) such that \(g_0 = \ldots = g_{m - 1} = 0 \) and \(g_m \neq 0 \). The integer \(m \) is the \((\text{discrete})\) valuation of \(g \) at \(p \).

If \(g \) and \(h \) are two elements of \(k[x, y] \) that are nonzero mod. \(\langle f \rangle \) we have that \(g \) divides \(h \) in \(R_p \) iff the valuation of \(g \) is \(\leq \) the valuation of \(h \).

Let us make a comment on this proof. It uses strong abstract arguments: nonzero primes of \(R \) are written \((x - a, y - b) \) with \((a, b) \) on the curve, and a domain is Prüfer iff all localisations at maximal ideals are valuation rings. Besides these strong arguments (the second one is non-constructive), the computations in the proof are very simple. The computation does depend on \((a, b) \) (the valuation of \(g \) at \((x - a, y - b) \) depends on \((a, b) \)), but intuitively it is always the same computation. So there must be simple analog computations not using the fact that \(k \) is algebraically closed and showing that \(R_{f_y} \) is arithmetical without using nonconstructive steps. The general dynamical method of deciphering such kind of classical proof, as explained...
in [3, chapters 7, 15], should work. In the sequel we present a similar deciphering. Nevertheless it is simpler than the one given by the general dynamical machinery, due to the fact that some new insights were found in trying to capture the essence of the computations in Section 1; e.g. Section 2 comes from a successful attempt to give a very uniform version of the computation of the valuation of \(g \) at \(\langle x - a, y - b \rangle \) in Section 1.

2 A generalisation of Hasse-Schmidt derivatives

From now on, all our arguments are constructive, following [3, 4]. Let \(B \) be a commutative ring, and \(a, b \) two elements of \(B \). We write \(\delta_0 : B[x, y] \to B \) the evaluation \(\delta_0(h) = h(a, b) \). We may write \(h_0 \) instead of \(\delta_0(h) \). If \(f \) is a polynomial in \(B[x, y] \) we can write in \(B[x, y] \)

\[
f - f_0 = (x - a)u - (y - b)v
\]

We have \(\delta_0(v) = -\delta_0(f_0) \) and

\[
(x - a)u = (y - b)v \quad \text{in} \quad B[x, y]/\langle f - f_0 \rangle.
\]

We are going to define a family of \(B \)-linear maps \(\delta_n : B[x, y]/\langle f - f_0 \rangle \to B \) so that, intuitively, the formal power series \(\sum_{i=0}^{\infty} \delta_i(g)t^i \) represents the development of the function \(g \) w.r.t. the parameter \(t = (x - a)/v = (y - b)/u \). These functions will satisfy

\[
\delta_n(gh) = \sum_{i+j=n} \delta_i(g)\delta_j(h)
\]

and may be seen as a generalisation of the notion of Hasse-Schmidt derivatives.

For an element \(g \) of \(B[x, y] \) we can write

\[
g - \delta_0(g) = (x - a)p - (y - b)q
\]

and hence define \(\Delta(g) = pv - qv \). This is well defined modulo \(f - f_0 \). Indeed if we have also \(g - \delta_0(g) = (x - a)p' - (y - b)q' \) then we can write \(p' = p + (y - b)w, q = q + (x - a)w \) with \(w \)
in \(B[x, y] \) and then

\[
p'v - q'u = pv - qv - w((x - a)u - (y - b)v) = (pv - qv) - w(f - f_0)
\]

Also if we have \(g' = g + w(f - f_0) \) and \(g - g_0 = (x - a)p - (y - b)q \) then

\[
g' - g_0 = (x - a)(p + uw) - (y - b)(q + vw)
\]

and \((p + uw)v - (q + vw)u \) is equal to \(pv - qv \).

Hence we have defined a \(B \)-linear map

\[
\Delta_{a, b, u, v} = \Delta : B[x, y]/\langle f - f_0 \rangle \to B[x, y]/\langle f - f_0 \rangle, \quad g \mapsto pv - qv
\]

(where \(g - g_0 = (x - a)p - (y - b)q \)). We define \(\delta_n : B[x, y]/\langle f - f_0 \rangle \to B \) by

\[
\delta_n = \delta_0 \circ \Delta^n.
\]

We show next that

\[
\Delta(gh) = g\Delta(h) + \delta_0(h)\Delta(g) \quad \text{in} \quad B[x, y]/\langle f - f_0 \rangle.
\]
For this, we write
\[g - g_0 = (x - a)p - (y - b)q, \quad h - h_0 = (x - a)r - (y - b)s \]
and
\[gh - g_0h_0 = (h - h_0)g + (g - g_0)h_0 = (x - a)(gr + h_0p) - (y - b)(gs + h_0q) \]
so that
\[\Delta(gh) = (gr + h_0p)v - (gs + h_0q)u = g(rv - su) + h_0 pv - qu = g\Delta(h) + \delta_0(h)\Delta(g) \]
By symmetry we have as well \(\Delta(gh) = h\Delta(g) + \delta_0(g)\Delta(h) \).
We can iterate the previous equality
\[\Delta^2(gh) = g\Delta^2(h) + \delta_1(h)\Delta(g) + \delta_0(h)\Delta^2(g), \]
and more generally
\[\Delta^n(gh) = g\Delta^n(h) + \sum_{i=1}^{n} \delta_{n-i}(h)\Delta^i(g) \quad (n > 0). \]
If we apply \(\delta_0 \) we get
\[\delta_n(gh) = \sum_{i+j=n} \delta_i(g)\delta_j(h) \]

Lemma 2.1 We have for any \(n \geq 1 \)
\[h\Delta^n(g) = g\Delta^n(h) \text{ in } B[x,y]/(f - f_0) \text{ modulo } \delta_0(g), \ldots, \delta_{n-1}(g), \delta_0(h), \ldots, \delta_{n-1}(h). \]

Proof. For \(n \geq 1 \) the equalities
\[\Delta^n(gh) = g\Delta^n(h) + \sum_{i=1}^{n} \delta_{n-i}(h)\Delta^i(g) \quad \text{and} \]
\[\Delta^n(gh) = h\Delta^n(g) + \sum_{i=1}^{n} \delta_{n-i}(g)\Delta^i(h) \]
give \(h\Delta^n(g) - g\Delta^n(h) \in \langle \delta_0(g), \ldots, \delta_{n-1}(g), \delta_0(h), \ldots, \delta_{n-1}(h) \rangle. \)

As said above, we can consider the map \(B[x,y]/(f - f_0) \to B[[t]], \ g \mapsto \sum_{i=0}^{\infty} \delta_i(g)t^i \) and the equality \(\delta_n(gh) = \sum_{i+j=n} \delta_i(g)\delta_j(h) \) shows that this is a map of \(B \)-algebras. One can ask when this map is injective.

Lemma 2.2 If we have \(d \in \langle f, g \rangle \cap B[x] \) which is primitive, i.e. \(d = \sum_{i=0}^{n} u_i x^i \) with \(1 \in \langle u_0, \ldots, u_n \rangle \) in \(B \) then \(D(\delta_0(f), \ldots, \delta_n(g)) \) is covered by \(D(\delta_0(f), \delta_0(g), \ldots, \delta_n(g)) \) in the Zariski spectrum of \(B \). Equivalently the Zariski spectrum of \(B_{f_0(a,b)} \) is covered by \(D(\delta_0(f), \delta_0(g), \ldots, \delta_n(g)) \), i.e., \(\langle 1 \rangle = \langle \delta_0(f), \delta_0(g), \ldots, \delta_n(g) \rangle \) in \(B_{f_0(a,b)} \).

Proof. We can write \(d = \sum_{i=0}^{n} c_i(x - a)^i \) and we have \(\langle 1 \rangle = \langle u_0, \ldots, u_n \rangle = \langle c_0, \ldots, c_n \rangle \). We have also in \(B[x,y] \) an equality of the form \(d = Af + Bg \). This shows that \(c_0 = \delta_0(d) \) is in \(\langle \delta_0(f), \delta_0(g) \rangle \).

Using \(\delta_n(gh) = \sum_{i+j=n} \delta_i(g)\delta_j(h) \) one shows by induction that \(\delta_k((x - a)^j) = 0 \) if \(j > k \) and \(\delta_k((x - a)^k) = \delta_0(v)^k = (-\delta_0(fy))^k \). Since \(\Delta(f) = 0 \) we have also \(\delta_k(f) = 0 \) when \(k > 0 \) and so, \(\delta_k(Af) = \delta_0(f)\delta_k(A) \).

We let \(C \) be the ring \(B \) quotiented by \(\delta_0(f), \delta_0(g), \ldots, \delta_n(g) \) and localised in \(\delta_0(fy) \). The Lemma states that the ring \(C \) is trivial. We know already that \(c_0 = 0 \) in \(C \). If we apply \(\delta_1 \) to \(\sum_{i=0}^{n} c_i(x - a)^i = Af + Bg \) we get \(c_1 = 0 \) in \(C \). Similarly we show \(c_2 = \ldots = c_n = 0 \) in \(C \) and hence \(1 = 0 \) in \(C \), as expected.

Notice that this reasoning shows actually that \(D(\delta_0(fy)) \) is covered by \(D(\delta_0(f), \delta_0(g), \ldots, \delta_n(g)) \) as soon as \(1 = \langle u_0, \ldots, u_m \rangle \).
3 The general case

We consider the case where \(k \) is a discrete field and \(f \) is an arbitrary polynomial in \(k[x,y] \). An important result we use is that polynomial rings over fields are gcd domain \([4]\) (which can be seen as a constructive version of the fact that such rings are classically unique factorisation domain).

The idea underlying the constructive deciphering of Section 1 is to replace “all points of the curve with coordinates in an algebraic closure of \(k' \)” by the generic zero of \(f \), which is \((a,b)\) in \(k[a,b]/(f(a,b)) \).

As before we write \(R \) for the ring \(k[x,y] \) quotiented by \(f \). We let \(A \) be the localisation \(R_{f_p} \). Given two elements \(g \) and \(h \) of \(k[x,y] \) we show how to build a finite covering of the Zariski spectrum of \(A \) by elements \(D(w) \) such that \(g \) divides \(h \) or \(h \) divides \(g \) in each localisation \(A_w \).

We shall need the following general result about Gröbner bases.

Lemma 3.1 Let \(k[a,x] = k[a_1, \ldots, a_m, x_1, \ldots, x_n] \) with a monomial ordering \(\preceq \) and \(I \) an ideal of \(k[a] \) of initial monomial ideal \(\text{init}_{\preceq}(I) \subseteq k[a] \). If \(J = I(k[a,x]) \) we have

\[
\text{init}_{\preceq}(J) = \text{init}_{\preceq}(I)k[a,x] = \text{init}_{\preceq}(I)k[x].
\]

Consequently for \(f \in k[x] \) and \(r \in k[a,x] \) we have an equality of normal form w.r.t. \(J \)

\[
N(rf) = N(r)f.
\]

We explain first why the localisation \(A \) is a pp-ring.

Lemma 3.2 Each divisor \(p \) of \(f \) in \(k[x,y] \) determines an idempotent \(e_p \) in \(A \) such that \(\langle p \rangle = \langle e_p \rangle \) in \(A \). Moreover if \(f = pq \) we have \(e_q = 1 - e_p \) and \(A_{e_p} \simeq (k[x,y]/\langle q \rangle)_{pr_q} \), which is a localisation of \((k[x,y]/\langle q \rangle)_{pr_q} \).

Proof. We have \(f = pq \) and hence \(f_y = p_yq + p_qy \). In \(R \) we have \(pq = 0 \) and \(f_yp = qyp^2 \). In \(A \) we have \(p = f_y^{-1}qyp^2 \) and \(e_p = f_y^{-1}qyp \) is an idempotent such that \(\langle p \rangle = \langle e_p \rangle \). In \(A \) we have \(pq = 0 \) so \(epeq = 0 \) and \(f_y \in \langle p,q \rangle \) so \(\langle e_p,e_q \rangle = \langle 1 \rangle \), this implies \(e_q = 1 - e_p \). In \(A_{e_p} \) we have \(e_p = 1 \), \(e_q = 0 \) and \(p, q \) are invertible. In \(k[x,y]/\langle q \rangle \) we have \(f = 0 \), and \(f_y, p, e_p \) are invertible. This gives natural isomorphisms between \(A_{e_p} \) and \((k[x,y]/\langle q \rangle)_{pr_q} \).

Example. Let \(f = pq \) with \(p = y(y + x + 1) \) and \(q = y(y + 2x + 1) = yr \). Let \(g = (y + x + 1)(y + 2x + 1) \). We obtain \(A \simeq (k[x,y]/\langle q \rangle)_{pr_q} \). In \((k[x,y]/\langle q \rangle)_{pr_q} \), \(p \) is not regular and \((k[x,y]/\langle q \rangle)_{pr_q} \simeq (k[x,y]/\langle r \rangle)_{pr_q} = (k[x,y]/\langle r \rangle)_{pr_q} \simeq (k[x,y]/\langle r \rangle)_{pr_q} \simeq (k[x,y]/\langle r \rangle)_{pr_q} \).

Proposition 3.3 \(A \) is a pp-ring.

Proof. If \(g \) is an element in \(k[x,y] \) then \(\text{Ann}(g) = \langle \tilde{f} \rangle \) in \(R \) with \(\tilde{f} = f/\gcd(f,g) \). Indeed let \(\tilde{g} = g/\gcd(f,g) \). Since \(\tilde{f} \) and \(\tilde{g} \) are relatively prime in \(k[x,y] \)

\[
f|wg \iff \tilde{f}|w\tilde{g} \iff \tilde{f}|w
\]

Since localisations do not change the annihilators of finitely generated ideals, it follows that, in \(A \), we have \(\text{Ann}(g) = \langle \tilde{f} \rangle = \langle e_{\tilde{f}} \rangle \).
Let \(g \) be an element of \(k[x, y] \). Using successive gcd computations we can write \(g = G \hat{g} \)
and \(f = F \hat{f} \) with \(\gcd(G, \hat{g}) = \gcd(F, \hat{f}) = \gcd(g, \hat{f}) = 1 \) and \(D(F) = D(G) = D(\gcd(f, g)) \) in \(k[x, y] \). Applying Lemma 3.2 with \(f = F \hat{f} \) we consider the idempotent \(e = e \in A \). In the localisation \(A_w \) we have \(F = G = 0 \). And the ring \(A_{1-e} \simeq (k[x, y]/(\hat{f}))_{f \hat{f} w} \) is a localisation of \((k[x, y]/(\hat{f}))_{\hat{f} w} \), with \(\gcd(g, \hat{f}) = 1 \) in \(k[x, y] \).

It follows that, in the problem of finding a covering of the Zariski spectrum of \(A \) by elements \(D(w) \) such that on each localisation \(A_w \) we have that \(g \) divides \(h \) or \(h \) divides \(g \), we can as well suppose the polynomials \(g \) and \(f \) are relatively prime in \(k[x, y] \).

Lemma 3.4 Let \(g, h \) be two elements of \(k[x, y] \) such that \(g \) and \(f \) are relatively prime in \(k[x, y] \). We can find \(u_0 = g, v_0 = h, u_1, v_1, \ldots, u_m, v_m \) in \(k[x, y] \) such that \(v_i g = u_i h \) for \(i = 0, \ldots, n \) and \(D(f_y) \) is covered by \(D(u_0), D(v_0), \ldots, D(u_m), D(v_m) \) in the Zariski spectrum of \(R \).

Proof. We consider now \(a, b \) as new indeterminates and consider the ring \(B = k[a, b] \) and fix a monomial ordering on \(B[x, y] = k[a, b, x, y] \). We use the notations and results of Section 2. Given \(g \) and \(h \) in \(k[x, y] \) we write

\[
g_i = \delta_i(g), \quad h_i = \delta_i(h) \quad \text{in} \quad B \quad \text{and} \quad r_i = \Delta_i(g), \quad s_i = \Delta_i(h) \quad \text{in} \quad B[x, y](^4).
\]

So \(g_i = \delta_0(r_i) = r_i(a, b, a, b) \) and \(h_i = \delta_0(s_i) = s_i(a, b, a, b) \).

Since \(f \) and \(g \) are relatively prime in \(k[x, y] \) the intersection \((f, g) \cap k[x] \) is nonempty. So we can apply Lemma 2.2 and there exists \(m \) such that \(D(f_y(a, b)) \) is covered by \(D(f_0, g_0, \ldots, g_m) \) in \(B = k[a, b] \). Replacing \(a \) and \(b \) by \(x \) and \(y \), we see that \(D(f_y) \) is covered by \(D(g_0(x, y), \ldots, g_m(x, y)) \) in \(R = k[x, y]/(\hat{f}) \).

For \(n \geq 1 \) let us write \(I_n \) for the sequence \(f_0, g_0, h_0, \ldots, g_{n-1}, h_{n-1} \) of elements in \(B \). By Lemma 2.1, we have \(h r_n = g s_n \) modulo \((f, I_n) \). This means that we have an equality of the form

\[
r_n h - s_n g = f w \mod \langle I_n \rangle
\]

for some \(w \) in \(k[a, b, x, y] \). Let us write \(N(p) \) the normal form of an element \(p \) in \(k[a, b, x, y] \) w.r.t. a Gröbner basis of the ideal generated by \(I_n \) and let \(p_n \) be \(N(r_n) \) and \(q_n \) be \(N(s_n) \). We have by Lemma 3.1 since \(f, g, h \) are in \(k[x, y] \)

\[
N(r_n h - s_n g) = p_n h - q_n g = N(f w) = f N(w)
\]

and hence in \(k[a, b, x, y] \)

\[
p_n h = q_n g \mod \langle f \rangle.
\]

We let \(u_0 = g, v_0 = h \) and for \(n \geq 1 \), \(u_n = p_n(x, y, x, y) \) and \(v_n = q_n(x, y, x, y) \). We get for all \(n \geq 0 \)

\[
u_n h = v_n g \quad \text{in} \quad R.
\]

Also, by construction, we have \(p_n = r_n \) and \(q_n = s_n \) modulo \(\langle I_n \rangle \). Hence, modulo \(\langle I_n \rangle \)

\[
u_n(a, b) = \delta_0(r_n) = g_n, \quad v_n(a, b) = \delta_0(s_n) = h_n
\]

Replacing \(a \) and \(b \) by \(x \) and \(y \) and writing these congruences for \(n = 1, 2, \ldots \) we get in \(k[x, y] \)

\[
\langle f, g_0(x, y), h_0(x, y), \ldots, g_n(x, y), h_n(x, y) \rangle = \langle f, u_0, v_0, \ldots, u_n, v_n \rangle
\]

\(^4\)More precisely, we take for \(r_i \) and \(s_i \) representatives in \(B[x, y] \) of \(\Delta^i(g) \) and \(\Delta^i(h) \), that are only defined modulo \(f - f_0 \).
for all \(n \geq 0 \), and so, in the Zariski spectrum of \(\mathbf{R} \)
\[
D(g_0(x,y), h_0(x,y), \ldots, g_n(x,y), h_n(x,y)) = D(u_0, v_0, \ldots, u_n, v_n).
\]

Finally, since \(D(f_y) \) is covered by \(D(g_0(x,y), \ldots, g_m(x,y)) \) in \(\mathbf{R} \), it is also covered by \(D(u_0, v_0, \ldots, u_m, v_m) \) and we are done. \(\square \)

Proposition 3.3 and lemma 3.4 give our main theorem.

Theorem 3.5 The ring \(\mathbf{A} = \mathbf{R}_{f_y} \) is a coherent Prüfer ring.

Corollary 3.6 If \(f \) is a polynomial in \(k[x,y] \) such that \(1 = \langle f, f_x, f_y \rangle \) then \(k[x,y]/\langle f \rangle \) is a coherent Prüfer ring.

Proof. The ring \(\mathbf{R} \) is arithmetical, reduced and coherent since \(\langle f_x, f_y \rangle = \langle 1 \rangle \) in \(\mathbf{R} \) and each ring \(\mathbf{R}_{f_x} \) and \(\mathbf{R}_{f_y} \) is arithmetical, reduced and coherent. \(\square \)

4 Examples

In all examples and in the program **magma**, we use the graded reverse lexicographical order on \(k[a,b,x,y] \).

4.1 Example 1

We consider \(f = x^2 + y^2 - 1 \) and \(g = 2x^2 - 1 \) and \(h = x - y \). We write
\[
f - f(a,b) = (x - a)(x + a) + (y - b)(y + b)
\]
so that \(u = x + a \) and \(v = -(y + b) \). We have then
\[
g = g_0 + 2(x - a)(x + a), \quad h = h_0 + (x - a) - (y - b)
\]
so that
\[
r_1 = -2(y + b)(x + a), \quad s_1 = -(x + y + a + b)
\]
We compute the normal form of \(s_1g \) and \(r_1h \) mod. \((f_0, g_0, h_0) \).
\[
p_1 = -2xy - 2b(x + y) - 1, \quad q_1 = -(x + y + 2b)
\]
and so
\[
u_1 = -2y^2 - 4xy - 1, \quad v_1 = -(x + 3y)
\]
We can check the identity \(gv_1 = hu_1 \) mod. \(f \).

4.2 Example 2

We take \(f = y^2 + x^4 - 1 \) and \(g = x \) and \(h = 1 - y \). We write
\[
f - f(a,b) = (x - a)(x^3 + x^2a + xa^2 + a^3) + (y - b)(y + b)
\]
so that \(u = x^3 + x^2a + xa^2 + a^3 \) and \(v = -(y + b) \). We have then
\[
g = g_0 + x - a \quad h = h_0 - (y - b)
\]
so that
\[
r_1 = -(y + b) \quad s_1 = -(x^3 + x^2a + xa^2 + a^3)
\]
We compute the normal form of \(s_1g \) and \(r_1h \) mod. \((f_0, g_0, h_0) \).
\[
p_1 = -(y + 1) \quad q_1 = -x^3
\]
and so \(u_1 = -(y + 1) \) and \(v_1 = -x^3 \).
4.3 Example 3

We take \(f = y^3x + x^3 + y \) and \(g = y^2x + x^2 + y \) and \(h = xy \). This is best done using the following program in magma. The program finds the following identities mod. \(f \)

\[
(x^3y - x^2y^2 + y^3 + 2x^2 - y^2 - 2x)h = (x^3 - y)g
\]

\[
(y^5 + x^2y^2 - y^4 - x^2y - x + 1)h = -(y^3 + x^2)g
\]

References

Implementation in magma

delta0 := function(q) // q in R[a,b,x,y, ...], retourne q(a,b,a,b, ...)
A := Parent(q) ;
return hom <A -> A | [a,b, a,b] cat [A.i : i in [5..Rank(A)]] >(q)
where a is A.1 where b is A.2 ;
end function ;

ab2xy := function(q) // q in R[a,b,x,y, ...], retourne q(x,y,x,y,)
A := Parent(q) ;
return hom <A -> A | [x,y] cat [A.i : i in [3..Rank(A)]]>(q)
where x is A.3 where y is A.4 ;
end function ;

Composantes := function(f) // f in R[a,b,x,y,]
// f(x,y) - f(a,b) = (x-a)*p - (y-b)*q
// p = p(a,b,x,y), q = q(a,b,y)
A := Parent(f) ; a := A.1 ; b := A.2 ; x := A.3 ; y := A.4 ;
fay := Evaluate(f, x, a) ; // f(a,b,a,y)
f0 := delta0(f) ;
// faire x = a pour determiner q qui ne depend pas de x
q := -ExactQuotient(fay - f0, y-b) ;
p := ExactQuotient(f - f0 + (y-b)*q, x-a) ;
assert f - f0 eq (x-a)*p - (y-b)*q ;
return p, q ;
end function ;

Delta := function(f, g) // f, g in R[a,b,x,y,]
A := Parent(f) ; u, v := Composantes(f) ; p, q := Composantes(g) ;
r := p*v - q*u ;
assert v*g eq v*delta0(g) + (x-a)*r + q*(f-delta0(f)) where a is A.1 where x is A.3 ;
return r, q ;
end function ;

Developpement := function(f, g, N) // f, g in R[a,b,x,y, ...]
A := Parent(f) ; a := A.1 ; x := A.3 ;
_, v := Composantes(f) ; Df := f - delta0(f) ;
G := [A |] ; r := g ; q := 0 ;
for n := 1 to N do
// G of length n-1
assert v"^(n-1) * g eq
 &+[A| G[i]*(x-a)^*(i-1) * v"^(n-i) : i in [1..n-1]] + r*(x-a)^*(n-1) + q*Df ;
Append("G, delta0(r)) ; // G[n] = r(a,b, a,b)
old_r := r ;
r, q2 := Delta(f, r) ;
assert v*old_r eq v*G[n] + (x-a)*r + q2*Df ;
q := q2*(x-a)^*(n-1) + v*q ;
end for ;
Append("G, r) ;
assert #G eq N+1 ;
assert v"^N * g eq &+[A| G[i+1]*(x-a)^*(i+1) * v"^(N-i) : i in [0..N]] + q*Df ;
return G, q ;
end function ;
Developpements := function(f, g, h, n)
// Retourne
// G = [g_0, g_1, ..., g_n], H = [h_0, h_1, ..., u_n]
// U = [u_0, u_1, ..., u_n], V = [v_0, v_1, ..., v_n]
// with g_i, h_i, u_i, v_i in k[x,y, ...]
// P = [p_0, p_1, ..., p_n], Q = [q_0, q_1, ..., q_n]
// with p_i, q_i in k[a,b,x,y, ...]
A := Parent(f) ; a := A.1 ; x := A.3 ;
f0 := delta0(f) ; // f0 := f(a,b)
_, w := Composantes(f) ;
// G, H, U, V, P, Q : polynomes in A
G := [A|]; H := [A|]; U := [A|]; V := [A|]; P := [A|]; Q := [A|];
// r contains r_0, r_1, ... Idem s contains s_0, s_1, ...
r := g ; s := h ;
qg := 0 ; qh := 0 ;
for k := 0 to n do
// G = [g_0, ..., g_{k-1}], H = [h_0, ..., h_{k-1}],
// U = [u_0, ..., u_{k-1}], V = [v_0, ..., v_{k-1}]
// P = [p_0, ..., p_{k-1}], Q = [q_0, ..., q_{k-1}]
// r = r_k, s = s_k
G0 := [delta0(gi) : gi in G] ; H0 := [delta0(hi) : hi in H] ;
assert w^k * g eq &+[A| G0[i+1]*(x-a)^i*w^(k-i) : i in [0..k-1]] + r*(x-a)^k + qg*(f-f0) ;
assert w^k * h eq &+[A| H0[i+1]*(x-a)^i*w^(k-i) : i in [0..k-1]] + s*(x-a)^k + qh*(f-f0) ;
// Calcul de u_k et v_k
I := ideal < A | f0, G0, H0 > ;
p := NormalForm(r,I) ; q := NormalForm(s,I) ;
Append(~P, p) ; Append(~Q, q) ;
u := ab2xy(p) ; v := ab2xy(q) ;
assert IsDivisibleBy(v*g - u*h, f) ;
// Calcul de g_k et h_k
Append(~U, u) ;
Append(~V, v) ;
Append(~G, ab2xy(r)) ;
Append(~H, ab2xy(s)) ;
assert [U[k+1]-G[k+1], V[k+1]-H[k+1]] subset ideal <A | f, G[1..k], H[1..k]> ;
assert ideal <A | f, G, H> eq ideal <A | f, U, V> ;
// Computation of r_{k+1} et s_{k+1}
r, q := Delta(f, r) ; s, qs := Delta(f, s) ;
qg := qr*(x-a)^k + w*qs ;
qh := qs*(x-a)^k + w*qg ;
// G = [g_0, ..., g_k], H = [h_0, ..., h_k],
// U = [u_0, ..., u_k], V = [v_0, ..., v_k]
// P = [p_0, ..., p_k], Q = [q_0, ..., q_k]
// r = r_{k+1}, s = s_{k+1}
end for ;
G0 := [delta0(gi) : gi in G] ; H0 := [delta0(hi) : hi in H] ;
assert w^{n+1} * g eq &+[A| G0[i+1]*(x-a)^i*w^(n+1-i) : i in [0..n]] + r*(x-a)^(n+1) + qg*(f-f0) ;
assert w^{n+1} * h eq &+[A| H0[i+1]*(x-a)^i*w^(n+1-i) : i in [0..n]] + s*(x-a)^(n+1) + qh*(f-f0) ;
return G, H, U, V, P, Q ;
end function;
// the first example

load "PlaneCurveTools.magma";
k := RationalField(); \kabxy\langle a, b, x, y \rangle := \text{PolynomialRing}(k, 4);
f := \text{x}^2 + \text{y}^2 - 1;
Composantes(f);
g := 2*\text{x}^2 - 1; \h := \text{x} - \text{y};
g0, r1 := \text{Explode(Developpement}(f, g, 1));
g0, r1;
h0, s1 := \text{Explode(Developpement}(f, h, 1));
h0, s1;

G, H, U, V, P, Q := \text{Developpements}(f, g, h, 1);
1 in ideal < \kabxy | f, G> ;
1 in ideal < \kabxy | f, H> ;
1 in ideal < \kabxy | f, U> ;
1 in ideal < \kabxy | f, V> ;
> f := \text{x}^2 + \text{y}^2 - 1;
> Composantes(f);
a + x
-b - y
> g := 2*\text{x}^2 - 1; \h := \text{x} - \text{y};
> g0, r1 := \text{Explode(Developpement}(f, g, 1));
> g0, r1;
2*a^2 - 1
-2*a*b - 2*a*y - 2*b*x - 2*x*y
> h0, s1 := \text{Explode(Developpement}(f, h, 1));
> h0, s1;
a - b
-a - b - x - y
>
> G, H, U, V, P, Q := \text{Developpements}(f, g, h, 1);
> 1 in ideal < \kabxy | f, G> ;
true
> 1 in ideal < \kabxy | f, H> ;
true
> 1 in ideal < \kabxy | f, U> ;
false
> 1 in ideal < \kabxy | f, V> ;
true
> G ;
[2*\text{x}^2 - 1,
-8*\text{x*y}]
> H ;
[\text{x} - \text{y},
-2*\text{x} - 2*\text{y}]
> U ;
[2*\text{x}^2 - 1,
-4*\text{x*y} - 2*\text{y}^2 - 1]
> V ;
[x - y,
-3*y - x
]
> P ;
[2*x^2 - 1,
-2*b*x - 2*b*y - 2*x*y - 1
]
> Q ;
[x - y,
-2*b - x - y
]

// Example 2
load "PlaneCurveTools.magma";
k := RationalField();
kabxy<a,b,x,y> := PolynomialRing(k, 4);
f := y^2 + x^4 - 1;
Composantes(f);
g := x; h := 1-y;
g0, r1 := Explode(Developpement(f, g, 1));
g0, r1;
h0, s1 := Explode(Developpement(f, h, 1));
h0, s1;
G, H, U, V, P, Q := Developpements(f, g, h, 1);
1 in ideal < kabxy | f, G>;
1 in ideal < kabxy | f, H>;
1 in ideal < kabxy | f, U>;
1 in ideal < kabxy | f, V>;
1 in ideal < kabxy | f, U, V>;
f := y^2 + x^4 - 1;
Composantes(f);
a^3 + a^2*x + a*x^2 + x^3
-b - y
> g := x; h := 1-y;
g0, r1 := Explode(Developpement(f, g, 1));
g0, r1;
a
-b - y
> h0, s1 := Explode(Developpement(f, h, 1));
h0, s1;
-b + 1
-a^3 - a^2*x - a*x^2 - x^3
> G, H, U, V, P, Q := Developpements(f, g, h, 1);
> 1 in ideal < kabxy | f, G>;
true
> 1 in ideal < kabxy | f, H>;
false
> 1 in ideal < kabxy | f, U>;
false
> 1 in ideal < kabxy | f, V>;
false
> 1 in ideal < kabxy | f, U, V>; true
> G;
[x,
 -2*y
]
> H;
[-y + 1,
 -4*x^3
]
> U;
[x,
 -y - 1
]
> V;
[-y + 1,
 -x^3
]
> P;
[x,
 -y - 1
]
> Q;
[-y + 1,
 -x^3
]
// Example 3
// Here, Z is the base ring
load "PlaneCurveTools.magma";
z := IntegerRing(); zabxy<a,b,x,y> := PolynomialRing(z, 4);
f := y^3*x + x^3 + y;
g := y^2*x + x^2 + y; h := x*y;
g, h, U, V := Developpements(f, g, h, 2);
1 in ideal < Zabxy | f, G> ;
3 in ideal < Zabxy | f, G> ;
1 in ideal < Zabxy | f, H> ;
3 in ideal < Zabxy | f, U> ;
1 in ideal < Zabxy | f, V> ;
1 in ideal < Zabxy | f, U, V> ;
f := y^3*x + x^3 + y ;
g := y^2*x + x^2 + y; h := x*y ;
G, H, U, V := Developpements(f, g, h, 2);
false
> 3 in ideal < Zabxy | f, G> ; true
> 1 in ideal < Zabxy | f, H> ; false
> 3 in ideal < Zabxy | f, U> ; false
> 1 in ideal < Zabxy | f, V> ; false
> 1 in ideal < Zabxy | f, U, V> ; true
> G ;
> [x^2 + x*y^2 + y,
 6*x^3*y - 6*x^2*y^2 + 3*x^2 - x*y^4 - 2*x + y^3 - y^2,
 9*x^5 - 18*x^4*y - 21*x^3*y^3 + 3*x^2*y^4 - 12*x^2*y - 2*x*y^6 + 6*x*y^2 -
 3*x + 3*y^5 - 2*y^4 + 1
]
> H ;
> [x*y,
 3*x^3 - 2*x*y^3 - y,
 -18*x^3*y^2 - 6*x^2 - 3*x*y^5 - y^3
]
> U ;
> [x^2 + x*y^2 + y,
 x^3*y - x^2*y^2 + 2*x^2 - 2*x + y^3 - y^2,
 x^2*y^2 - x^2*y - x + y^5 - y^4 + 1
]
> V ;
> [x*y,
 x^3 - y,
 -x^2 - y^3
]