[retour]
Relecture constructive de la théorie d'Artin-Schreier
Annals of Pure and Applied Logic 91, (1998),
59-92.
Relecture constructive de la théorie d'Artin-Schreier. pdf
Résumé :
Nous introduisons la notion de structure algébrique
dynamique, inspirée de l'évaluation
dynamique et de la théorie des modèles.
Nous montrons comment
cette notion constructive permet une relecture de la théorie
d'Artin-Schreier, avec la modification capitale que le résultat
final est alors établi de manière constructive.
Nous pensons que
ce que nous avons réalisé ici sur un cas d'école peut être
généralisé à des parties significatives de l'algèbre
classique, et est donc une contribution à la réalisation du
programme de Hilbert pour l'algèbre classique.
Constructive rereading of Artin-Schreier's theory
Abstract :
We introduce the notion of "Dynamic Algebraic Structure"
(DAS) inspired by Dynamic Evaluation (in computer algebra) and Model
Theory. We show that this constructive notion allows a rereading of
the Artin-Schreier-Robinson solution for the 17-th Hilbert Problem.
So, il we know how to reread the proofs, this kind of abstract theory
contains an algorithm which computes the concrete result (here, the
sum of squares required by Hilbert).
Our method gives a constructive
semantic for certain parts af abstract classical mathematic.
The idea is the following: replace the classical algebraic
structures "constructed" by Choice and Principle of Third Excluded
Middle (TEM), by DAS and dynamic evaluations of these DAS. Then TEM
is replaced by construction of branching in the trees of dynamic
evaluation of the DAS. If Choice is used in the form of Godel
completeness theorem, it is not really necessary to use it for
obtaining concrete results: in DAS, Choice is simply replaced by
... nothing! This is because the classical proof is by
contradiction: "if there were not a sum of squares then some formal
theory would admit a pathological model".
The constructive reasoning
is more direct: since the pathological theory proves 0 = 1 we know
how to construct the sum of squares ... and classical models have
disappeared in the proof. They are replaced by dynamic evaluations of
DAS.
We think that we have given, for an academic example, a new method,
realizing a kind of Hilbert Program for significative parts of
classical algebra.